Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
In this paper the loaded polymer transport and its escape via a nanometer size aperture, virtually by nanomembrane, the polymer being moved by an exterior electrostatic field, has been studied. Assuming a linear dependency of the friction coefficient on the number of segments m and a parabolic behavior for the open-free (Gibbs) energy, in attendance of a present electrical potential across nanopore, an explicit flux formula for the polymers passed over a dimensional restricted pore, was derived. In addition, the linear polymers transport through a nanometer-sized pore under the action of a constant force is presented. The important mechanical effects of superimposed steady force and the monomers number of macromolecule chain on the polymer translocation process by nanomembranes, in a 2D diffusion model, have been demonstrated. The escape time by a three-dimensional graph as a function of the electric field intensity and monomers number of polymer was represented.