Espace à quatre dimensionsframe|L'équivalent en quatre dimensions du cube est le tesseract. On le voit ici en rotation, projeté dans l'espace usuel (les arêtes représentées comme des tubes bleus sur fond noir).|alt=Animation d'un tesseract (les arêtes représentées comme des tubes bleus sur fond noir). En mathématiques, et plus spécialement en géométrie, l'espace à quatre dimensions (souvent abrégé en 4D ; on parlera par exemple de rotations en 4D) est une extension abstraite du concept de l'espace usuel vu comme espace à trois dimensions : tandis que l'espace tridimensionnel nécessite la donnée de trois nombres, appelés dimensions, pour décrire la taille ou la position des objets, l'espace à quatre dimensions en nécessite quatre.
Additive Schwarz methodIn mathematics, the additive Schwarz method, named after Hermann Schwarz, solves a boundary value problem for a partial differential equation approximately by splitting it into boundary value problems on smaller domains and adding the results. Partial differential equations (PDEs) are used in all sciences to model phenomena. For the purpose of exposition, we give an example physical problem and the accompanying boundary value problem (BVP). Even if the reader is unfamiliar with the notation, the purpose is merely to show what a BVP looks like when written down.
Substructure (mathematics)In mathematical logic, an (induced) substructure or (induced) subalgebra is a structure whose domain is a subset of that of a bigger structure, and whose functions and relations are restricted to the substructure's domain. Some examples of subalgebras are subgroups, submonoids, subrings, subfields, subalgebras of algebras over a field, or induced subgraphs. Shifting the point of view, the larger structure is called an extension or a superstructure of its substructure.
Demi-espacevignette|Le plan rouge détermine le demi-espace bleu. En mathématiques, la notion de demi-espace peut se définir de façon intuitive comme étant l'une des deux parties de l'espace que l'on aurait partagé avec un plan. En physique, on parle de milieu semi-infini. Soient E un espace affine réel, g une application affine non constante de E dans R et H l'hyperplan affine d'équation g(x) = 0. Les deux demi-espaces fermés délimités par H sont l'ensemble F+ des points x tels que g(x) ≥ 0 et l'ensemble F– des points x tels que g(x) ≤ 0.