Taylor expansions for the moments of functions of random variablesIn probability theory, it is possible to approximate the moments of a function f of a random variable X using Taylor expansions, provided that f is sufficiently differentiable and that the moments of X are finite. Given and , the mean and the variance of , respectively, a Taylor expansion of the expected value of can be found via Since the second term vanishes. Also, is . Therefore, It is possible to generalize this to functions of more than one variable using multivariate Taylor expansions.
Computational learning theoryIn computer science, computational learning theory (or just learning theory) is a subfield of artificial intelligence devoted to studying the design and analysis of machine learning algorithms. Theoretical results in machine learning mainly deal with a type of inductive learning called supervised learning. In supervised learning, an algorithm is given samples that are labeled in some useful way. For example, the samples might be descriptions of mushrooms, and the labels could be whether or not the mushrooms are edible.
Somme de RiemannEn mathématiques, et plus précisément en analyse, les sommes de Riemann sont des sommes finies approchant des intégrales. En pratique, elles permettent de calculer numériquement des aires sous la courbe de fonctions ou des longueurs d'arcs, ou inversement, de donner une valeur à des suites de sommes. Elles peuvent également être utilisées pour définir la notion d'intégration. Leur nom vient du mathématicien allemand Bernhard Riemann.
Special linear Lie algebraIn mathematics, the special linear Lie algebra of order n (denoted or ) is the Lie algebra of matrices with trace zero and with the Lie bracket . This algebra is well studied and understood, and is often used as a model for the study of other Lie algebras. The Lie group that it generates is the special linear group. The Lie algebra is central to the study of special relativity, general relativity and supersymmetry: its fundamental representation is the so-called spinor representation, while its adjoint representation generates the Lorentz group SO(3,1) of special relativity.