En mathématiques, et plus précisément en analyse, les sommes de Riemann sont des sommes finies approchant des intégrales. En pratique, elles permettent de calculer numériquement des aires sous la courbe de fonctions ou des longueurs d'arcs, ou inversement, de donner une valeur à des suites de sommes. Elles peuvent également être utilisées pour définir la notion d'intégration. Leur nom vient du mathématicien allemand Bernhard Riemann. L'idée directrice derrière la construction des sommes revient à approcher la courbe par une fonction constante par morceaux, avec des valeurs choisies de sorte à approcher au mieux la fonction originelle, puis à additionner les aires des rectangles ainsi formés, et enfin réduire la largeur de ces rectangles. C'est la mise en application de l'intégrale de Riemann. Soit une fonction définie en tout point du segment [a , b]. On se donne une subdivision marquée σ = (a = x < x < x < ... < x = b ; t ∈ [x, x] pour i = 1, ... , n). La somme de Riemann de f sur [a , b] liée à σ est définie par : Si le pas de la subdivision σ tend vers zéro, alors la somme de Riemann générale converge vers . C'est d'ailleurs la définition originale par Riemann de son intégrale. Si, au lieu de demander que les sommes de Riemann convergent vers une limite L lorsque le pas est majoré par un nombre δ qui tend vers zéro, on demande que les sommes de Riemann puissent être rendues arbitrairement proches d'une valeur L lorsque x –x ≤ δ(t), t ∈ [x, x], avec δ une fonction strictement positive, on arrive au concept de l'intégrale de Kurzweil-Henstock. C'est une généralisation qui permet d'intégrer plus de fonctions, mais qui donne la même valeur à l'intégrale lorsque la fonction est déjà intégrable au sens de Riemann. Cas particuliers Certains choix de t sont plus répandus : pour t = x pour tout i, on parle de méthode des rectangles à gauche pour t = x pour tout i, on parle de méthode des rectangles à droite pour t = 1/2(x + x) pour tout i, on parle de méthode du point médian pour f(t) = sup {f(t), t ∈ [x, x]} pour tout i, on parle de somme de Riemann supérieure ou somme de Darboux supérieure pour f(t) = inf {f(t), t ∈ [x, x]} pour tout i, on parle de somme de Riemann inférieure ou somme de Darboux inférieure Ces deux derniers cas constituent la base de l'intégrale de Darboux.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (27)
MATH-201: Analysis III
Calcul différentiel et intégral. Eléments d'analyse complexe.
MATH-410: Riemann surfaces
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
MATH-100(b): Advanced analysis I
Dans ce cours, nous étudierons les notions fondamentales de l'analyse réelle, ainsi que le calcul différentiel et intégral pour les fonctions réelles d'une variable réelle.
Afficher plus
Séances de cours associées (98)
Formes harmoniques et surfaces de Riemann
Explore les formes harmoniques sur les surfaces de Riemann, couvrant l'unicité des solutions et l'identité bilinéaire de Riemann.
Riemann Integral: Construction et propriétés
Explore la construction et les propriétés de l'intégrale de Riemann, y compris les propriétés intégrales et le théorème de la valeur moyenne.
Formes harmoniques : théorème principal
Explore les formes harmoniques sur les surfaces de Riemann et l'unicité des solutions aux équations harmoniques.
Afficher plus
Publications associées (27)
Concepts associés (12)
Théorème fondamental de l'analyse
En mathématiques, le théorème fondamental de l'analyse (ou théorème fondamental du calcul différentiel et intégral) établit que les deux opérations de base de l'analyse, la dérivation et l'intégration, sont, dans une certaine mesure, réciproques l'une de l'autre. Il est constitué de deux familles d'énoncés (plus ou moins généraux selon les versions, et dépendant de la théorie de l'intégration choisie) : premier théorème : certaines fonctions sont « la dérivée de leur intégrale » ; second théorème : certaines fonctions sont « l'intégrale de leur dérivée ».
Calcul numérique d'une intégrale
En analyse numérique, il existe une vaste famille d’algorithmes dont le but principal est d’estimer la valeur numérique de l’intégrale définie sur un domaine particulier pour une fonction donnée (par exemple l’intégrale d’une fonction d’une variable sur un intervalle). Ces techniques procèdent en trois phases distinctes : Décomposition du domaine en morceaux (un intervalle en sous-intervalles contigus) ; Intégration approchée de la fonction sur chaque morceau ; Sommation des résultats numériques ainsi obtenus.
Méthode de Simpson
En analyse numérique, la méthode de Simpson, du nom de Thomas Simpson, est une technique de calcul numérique d'une intégrale, c'est-à-dire le calcul approché de : Cette méthode utilise l'approximation d'ordre 2 de f par un polynôme quadratique P prenant les mêmes valeurs que f aux points d'abscisse a, b et m = . Pour déterminer l'expression de cette parabole (polynôme de degré 2), on utilise l'interpolation lagrangienne.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.