Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
In this article, a cryo-CMOS receiver integrated with a frequency synthesizer for scalable multiplexed readout of qubits is presented, focusing on radio frequency (RF) reflectometry readout of silicon-based semiconductor spin qubits/quantum dots. The proposed spin qubit readout chip consists of a wideband low noise amplifier (LNA), a quadrature mixer, a complex filter, a pair of in-phase/quadrature (I/Q) intermediate frequency (IF) amplifier chains, and a type-II charge-pump phase-locked loop (PLL) with a programmable frequency divider providing local oscillator (LO) signals. Noise optimizations are applied to the LNA design and the quadrature active mixer design to obtain the required performance. A mode-switching complementary voltage-controlled oscillator (VCO) is proposed to achieve low-power and low-phase noise in a wide-frequency tuning range (46.5%). Circuit modifications and design considerations for robust cryogenic temperature operation are presented and discussed. Measurements show that the receiver provides an average gain of 65 dB, a minimum noise figure of 0.5 dB, an IF bandwidth of 0.1-1.5 GHz, and an image rejection ratio of 23 dB at 3.5 K with a power consumption of 108 mW. This cryo-CMOS receiver with frequency synthesizer for spin qubit readout is a first step toward fully-integrated qubit readout and control.
Tobias Kippenberg, Rui Ning Wang, Guanhao Huang, Anat Siddharth, Mikhail Churaev, Viacheslav Snigirev, Junqiu Liu