Prédiction dynamiqueLa prédiction dynamique est une méthode inventée par Newton et Leibniz. Newton l’a appliquée avec succès au mouvement des planètes et de leurs satellites. Depuis elle est devenue la grande méthode de prédiction des mathématiques appliquées. Sa portée est universelle. Tout ce qui est matériel, tout ce qui est en mouvement, peut être étudié avec les outils de la théorie des systèmes dynamiques. Mais il ne faut pas en conclure que pour connaître un système il est nécessaire de connaître sa dynamique.
Traffic flowIn mathematics and transportation engineering, traffic flow is the study of interactions between travellers (including pedestrians, cyclists, drivers, and their vehicles) and infrastructure (including highways, signage, and traffic control devices), with the aim of understanding and developing an optimal transport network with efficient movement of traffic and minimal traffic congestion problems.
Mode de défaillanceLe mode de défaillance est la forme observable du dysfonctionnement d’un produit ou d’une opération du système étudié. Il sert de base de travail dans l'élaboration d'une analyse de type AMDEC Un mode de défaillance doit répondre aux caractéristiques suivantes : Il est relatif à la fonction étudiée. Il décrit la manière dont le système ne remplit plus sa fonction. Il s'exprime en termes techniques précis (court-circuit...) Il existe 5 modes génériques de défaillance : perte de la fonction fonctionnement in
Réseaux antagonistes génératifsEn intelligence artificielle, les réseaux antagonistes génératifs (RAG) parfois aussi appelés réseaux adverses génératifs (en anglais generative adversarial networks ou GANs) sont une classe d'algorithmes d'apprentissage non supervisé. Ces algorithmes ont été introduits par . Ils permettent de générer des images avec un fort degré de réalisme. Un GAN est un modèle génératif où deux réseaux sont placés en compétition dans un scénario de théorie des jeux. Le premier réseau est le générateur, il génère un échantillon (ex.
Failure mode and effects analysisFailure mode and effects analysis (FMEA; often written with "failure modes" in plural) is the process of reviewing as many components, assemblies, and subsystems as possible to identify potential failure modes in a system and their causes and effects. For each component, the failure modes and their resulting effects on the rest of the system are recorded in a specific FMEA worksheet. There are numerous variations of such worksheets.
Adversarial machine learningAdversarial machine learning is the study of the attacks on machine learning algorithms, and of the defenses against such attacks. A survey from May 2020 exposes the fact that practitioners report a dire need for better protecting machine learning systems in industrial applications. To understand, note that most machine learning techniques are mostly designed to work on specific problem sets, under the assumption that the training and test data are generated from the same statistical distribution (IID).
Taux de défaillanceLe taux de défaillance, ou taux de panne, est une expression relative à la fiabilité des équipements et de chacun de leurs composants. Son symbole est la lettre grecque λ (lambda). Le taux de défaillance d'un équipement à l'instant t est la limite, si elle existe, du quotient de la probabilité conditionnelle que l'instant T de la (première) défaillance de cet équipement soit compris dans l'intervalle de temps donné [t, t + Δt] par la durée Δt de cet intervalle, lorsque Δt tend vers zéro, en supposant que l'entité soit disponible au début de l'intervalle de temps.
Prévision numérique du tempsLa prévision numérique du temps (PNT) est une application de la météorologie et de l'informatique. Elle repose sur le choix d'équations mathématiques offrant une proche approximation du comportement de l'atmosphère réelle. Ces équations sont ensuite résolues, à l'aide d'un ordinateur, pour obtenir une simulation accélérée des états futurs de l'atmosphère. Le logiciel mettant en œuvre cette simulation est appelé un modèle de prévision numérique du temps.
Course aux armementsUne course aux armements a lieu lorsque plusieurs États rivalisent entre eux pour créer les forces armées les plus puissantes et les armements les plus performants. Par extension, le terme de « course aux armements » désigne toute circonstance où deux groupes (deux espèces vivantes, deux systèmes, etc.) opposés se dotent successivement de mesures et de contre-mesures, l'un ripostant à l'autre.
Atmospheric modelIn atmospheric science, an atmospheric model is a mathematical model constructed around the full set of primitive, dynamical equations which govern atmospheric motions. It can supplement these equations with parameterizations for turbulent diffusion, radiation, moist processes (clouds and precipitation), heat exchange, soil, vegetation, surface water, the kinematic effects of terrain, and convection. Most atmospheric models are numerical, i.e. they discretize equations of motion.