Graphe médianEn théorie des graphes, un graphe médian est un type de graphe. Étant donné un triplet de nœuds dans un graphe, les médians de ces sommets sont les sommets se trouvant sur les plus courts chemins entre ces sommets. Un graphe médian est un graphe tel que pour tout triplet de nœuds il existe un unique médian. En théorie des graphes, les médians d'un triplet de sommets sont les sommets se trouvant sur les plus courts chemins entre ces sommets. Autrement dit, si est l'ensemble de sommets sur les plus courts chemins entre et , alors l'ensemble des sommets médians est .
Grand modèle de langageUn grand modèle de langage, grand modèle linguistique, grand modèle de langue, modèle massif de langage ou encore modèle de langage de grande taille (LLM, pour l'anglais large language model) est un modèle de langage possédant un grand nombre de paramètres (généralement de l'ordre du milliard de poids ou plus). Ce sont des réseaux de neurones profonds entraînés sur de grandes quantités de texte non étiqueté utilisant l'apprentissage auto-supervisé ou l'apprentissage semi-supervisé.
Apprentissage profondL'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.
Types of artificial neural networksThere are many types of artificial neural networks (ANN). Artificial neural networks are computational models inspired by biological neural networks, and are used to approximate functions that are generally unknown. Particularly, they are inspired by the behaviour of neurons and the electrical signals they convey between input (such as from the eyes or nerve endings in the hand), processing, and output from the brain (such as reacting to light, touch, or heat). The way neurons semantically communicate is an area of ongoing research.
Apprentissage automatiqueL'apprentissage automatique (en anglais : machine learning, « apprentissage machine »), apprentissage artificiel ou apprentissage statistique est un champ d'étude de l'intelligence artificielle qui se fonde sur des approches mathématiques et statistiques pour donner aux ordinateurs la capacité d'« apprendre » à partir de données, c'est-à-dire d'améliorer leurs performances à résoudre des tâches sans être explicitement programmés pour chacune. Plus largement, il concerne la conception, l'analyse, l'optimisation, le développement et l'implémentation de telles méthodes.
Intelligence artificiellevignette|redresse=0.8|Les assistants personnels intelligents sont l'une des applications concrètes de l'intelligence artificielle dans les années 2010. L'intelligence artificielle (IA) est un ensemble de théories et de techniques visant à réaliser des machines capables de simuler l'intelligence humaine. Souvent classée dans le groupe des mathématiques et des sciences cognitives, elle fait appel à la neurobiologie computationnelle (particulièrement aux réseaux neuronaux) et à la logique mathématique (partie des mathématiques et de la philosophie).
Small-world networkA small-world network is a mathematical graph in which most nodes are not neighbors of one another, but the neighbors of any given node are likely to be neighbors of each other. Due to this, most neighboring nodes can be reached from every other node by a small number of hops or steps. Specifically, a small-world network is defined to be a network where the typical distance L between two randomly chosen nodes (the number of steps required) grows proportionally to the logarithm of the number of nodes N in the network, that is: while the global clustering coefficient is not small.
Théorème d'approximation universelleDans la théorie mathématique des réseaux de neurones artificiels, le théorème d'approximation universelle indique qu'un réseau à propagation avant d'une seule couche cachée contenant un nombre fini de neurones (c'est-à-dire, un perceptron multicouche) peut approximer des fonctions continues sur des sous-ensembles compacts de Rn. Une des premières versions du cas avec largeur arbitraire a été prouvé par George Cybenko en 1989 pour des fonctions d'activation sigmoïdes.
Espace localement compactEn topologie, un espace localement compact est un espace séparé qui admet des voisinages compacts pour tous ses points. Un tel espace n'est pas nécessairement compact lui-même mais on peut y généraliser (au moins partiellement) beaucoup de résultats sur les espaces compacts. Ce sont aussi les espaces qu'on peut « rendre » compacts avec un point grâce à la compactification d'Alexandrov. La compacité est une source très fertile de résultats en topologie mais elle reste une propriété très contraignante.
Espace régulierEn mathématiques, un espace régulier est un espace topologique vérifiant les deux conditions de séparation suivantes : T : l'espace est séparé ; T : on peut séparer un point x et un fermé ne contenant pas x par deux ouverts disjoints. vignette|Le point x et le fermé F sont respectivement inclus dans les ouverts U et V, qui sont disjoints. Soit E un espace topologique (non nécessairement séparé).