**Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?**

Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur GraphSearch.

Publication# Lagrangian analysis of bio-inspired vortex ring formation

Résumé

Pulsatile jet propulsion is a highly energy-efficient swimming mode used by various species of aquatic animals that continues to inspire engineers of underwater vehicles. Here, we present a bio-inspired jet propulsor that combines the flexible hull of a jellyfish with the compression motion of a scallop to create individual vortex rings for thrust generation. Similar to the biological jetters, our propulsor generates a nonlinear time-varying exit velocity profile and has a finite volume capacity. The formation process of the vortices generated by this jet profile is analysed using time-resolved velocity field measurements. The transient development of the vortex properties is characterised based on the evolution of ridges in the finite-time Lyapunov exponent field and on local extrema in the pressure field derived from the velocity data. Special attention is directed toward the vortex merging observed in the trailing shear layer. During vortex merging, the Lagrangian vortex boundaries first contract in the streamwise direction before expanding in the normal direction to keep the non-dimensional energy at its minimum value, in agreement with the Kelvin–Benjamin variational principle. The circulation, diameter and translational velocity of the vortex increase due to merging. The vortex merging takes place because the velocity of the trailing vortex is higher than the velocity of the main vortex ring prior to merging. The comparison of the temporal evolution of the Lagrangian vortex boundaries and the pressure-based vortex delimiters confirms that features in the pressure field serve as accurate and robust observables for the vortex formation process.

Official source

Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Concepts associés

Chargement

Publications associées

Chargement

Publications associées (3)

Chargement

Chargement

Chargement

Vortex rings are very efficient at transporting fluid on long distances and can generate large forces, either thrust or drag. These abilities are influenced by the vorticity distribution within the vortex. Previous work on vortices produced by piston-cylinders showed that the vorticity distribution reaches a steady state when the vortex separates from the apparatus. First, we experimentally investigate the evolution of the vorticity distribution independently of the vortex separation. The vortices are created by impulsively accelerating cones immersed in water. In this configuration, the self-induced velocity of the vortex is directed towards the cone and there is no separation. Particle image velocimetry is carried on at Reynolds numbers around 30000. The vorticity distribution is quantified using the non-dimensional energy of the vortex, which is the energy with respect to the impulse and circulation. After three convective times, the volume of fluid recirculating within the vortex ring is filled with vortical fluid and the non-dimensional energy to a value around 0.3. The vorticity produced on the cone circumvents the vortex and a portion of the vortex volume is lost via tail-shedding. The translational velocity of the vortex ring linearly depends on its circulation and non-dimensional energy. This velocity, relative to the cone, also converges after three convective times and is found to be a more reliable scaling parameter than energy or circulation. It consistently reaches values around 0.9. In a second part, we present models to predict the vortex growth in the wake of disks and cones. Two models are developed. The first model reduces the vortex ring to a core of constant vorticity density. The translational velocity of the vortex is deduced and its trajectory integrated. The model accurately predicts the maximum circulation of the vortex. A second model, based on axisymmetric discrete vortex methods, predicts the growth, vorticity distribution and tail-shedding of the vortex. A third model is developed to explain why the non-dimensional energy consistently converges to values around 0.3. Based on the self similar roll-up of inviscid shear layers, a non-dimensional energy of 0.33 is computed for vortices formed by impulsively accelerated disks or pistons. The model also predicts that a linear acceleration profile leads to a more uniform vorticity distribution, decreasing the non-dimensional energy to 0.18. This result indicates that the vorticity distribution can be controlled by varying the velocity profile of the vortex generator. Another control option is to use permeable disks. We impulsively accelerated perforated disks and observed the vortex formation. A portion of the incoming flow bleeds through the disk and does not circulate around the disk edge, resulting in a lower vorticity maximum. The vortex ring has a more uniform vorticity distribution, as well as a more elongated shape. The non-dimensional energy is brought down to 0.14. Finally, vortex rings have a great potential to transport fluid on long distances, such as extinguishing powder. Their resilience to vortical perturbations is critical for the transport and depends on the vorticity distribution within the vortex. Simulations with nested contour methods are performed to assess that resilience. Vortices with lower non-dimensional energy shed less vortical volume when facing perturbations and qualify as better candidates for fluid transport.

We study the evolution of a system composed of N non-interacting particles of mass m distributed in a cylinder of length L. The cylinder is separated into two parts by an adiabatic piston of a mass M ≫ m. The length of the cylinder is a fix parameter and can be finite or infinite (in this case N is infinite). For the infinite case we carry out a perturbative analysis using Boltzmann's equation based on a development of the velocity distribution of the piston in function of a small dimensionless parameter ε = √(m/M). The non-stationary case is solved up to the order ε ;; our analysis shows that the system tends exponentially fast towards a stationary state where the piston has an average velocity V. The characteristic time scale for this relaxation is proportional to the mass of the piston (τ0 = M/A where A is the cross-section of the piston). We show that for equal pressures the collisions of the particles induce asymmetric fluctuations of the velocity of the piston which leads to a macroscopic movement of the piston in the direction of the higher temperature. In the case of the finite model a perturbative approach based on Liouville's equation (using the parameter α = 2m/(M + m)) shows that the evolution towards thermal equilibrium happens on two well separated time scales. The first relaxation step is a fast, deterministic and adiabatic evolution towards a state of mechanical equilibrium with approximately equal pressures but different temperatures. The movement of the piston is more or less damped. This damping qualitatively depends on whether the ratio R = Mgas/M between the total mass of the gas and the mass of the piston is small (R < 2) or large (R > 4). The second part of the evolution is much slower ; the typical time scales are proportional to the mass of the piston. There is a stochastic evolution including heat transfer leading to thermal equilibrium. A microscopic analysis yields the relation XM(t) = L(1/2 - ξ(at)) where the function ξ is independent of M. Using the hypothesis of homogeneity (i.e. the values of the densities, pressures and temperatures at the surface of the piston can be replaced by their respective average values) introduced in the previous analysis the observed damping does not show up. This can be explained by shock waves propagating between the piston and the walls at the extremities of the cylinder. In order to study the behaviour of the system there is hence a need to adequately describe the non-equilibrium fluids around the piston. We carry out an analysis of the infinite case, based on the perturbative approach introduced earlier. In this case the initial conditions are chosen in such a manner that the piston on average stays at the origin. It is shown that it is possible to describe the evolution of the fluids in such a way that it is coherent with the two laws of thermodynamics and the phenomenological relationships. Finally we study the case of a constant velocity of the piston in a finite cylinder. Such a condition and elastic collisions allow us to derive an explicit expression for the distribution of the fluids and hence for the hydrodynamics fields. This expression reveals the presence of shock waves between the piston and the extremities of the cylinder.

The presence of aerodynamic vortices is widespread in nature. They can be found at small scales near the wing tip of flying insects or at bigger scale in the form of hurricanes, cyclones or even galaxies. They are identified as coherent regions of high vorticity where the flow is locally dominated by rotation over strain. A better comprehension of vortex dynamics has a great potential to increase aerodynamic performances of moving vehicles, such as drones or autonomous underwater vehicles. An accelerated flat plate, a pitching airfoil or a jet flow ejected from a nozzle give rise to the formation of a primary vortex, followed by the shedding of smaller secondary vortices. We experimentally study the growth, timing and trajectory of primary and secondary vortices generated from a rectangular flat plate that is rotated around its centre location in a quiescent fluid. We systematically vary the rotational speed of the plate to get a chord based Reynolds number \Rey that ranges from 800 to 12000. We identify the critical \Rey for the occurrence of secondary vortices to be at 2500. The timing of the formation of the primary vortex is \Rey independent but is affected by the plate's dimensions. The circulation of the primary vortex increases with the angular position $\alpha$ of the plate, until the plate reaches 30°. Increasing the thickness and decreasing the chord lead to a longer growth of the primary vortex. Therefore, the primary vortex reaches a higher dimensionless limit strength. We define a new dimensionless time $T^*$ based on the thickness of the plate to scale the age of the primary vortex. The primary vortex stops growing when $T^* \approx 10$, regardless of the dimensions of the plate. We consider this value to be the vortex formation number of the primary vortex generated from a rotating rectangular flat plate in a Reynolds number range that goes from 800 to 12000. When $\alpha$ > 30°, the circulation released in the flow is entrained into secondary vortices for $\Rey > 2500$. The circulation of all secondary vortices is approximately 4 to 5 times smaller than the circulation of the primary vortex. We present a modified version of the Kaden spiral that accurately predicts the shear layer evolution and the trajectory of primary and secondary vortices during the entire rotation of the plate.We model the timing dynamics of secondary vortices with a power law equation that depends on two distinct parameter: $\chi$ and $\alpha_{0}$.The parameter $\chi$ indicates the relative increase in the time interval between the release of successive secondary vortices.The parameter $\alpha_{0}$ indicates the angular position at which the primary vortex stops growing and pinches-off from the plate.We also observe that the total circulation released in the flow is proportional to $\alpha^{1/3}$, as predicted by the inviscid theory.The combination of the power law equation with the total circulation computed from inviscid theory predict the strength of primary and secondary vortices, based purely on the plate's geometry and kinematics.The strength prediction is confirmed by experimental measurements.In this thesis we provided a valuable insight into the growth, timing and trajectory of primary and secondary vortices generated by a rotating flat plate. Future work should be directed towards more complex object geometries and kinematics, to confirm the validity of the modified Kaden spiral and explore the influence on the formation number.

Concepts associés (18)

Dimension

Le terme dimension, du latin dimensio « action de mesurer », désigne d’abord chacune des grandeurs d’un objet : longueur, largeur et profondeur, épaisseur ou hauteur, ou encore son diamètre si c'est

Tourbillon (physique)

vignette|upright=0.65|Tourbillon d'eau dans une bouteille.
Un tourbillon est, en dynamique des fluides, une région d'un fluide dans laquelle l'écoulement est principalement un mouvement de rotation a

Évolution (biologie)

En biologie, l’évolution est la transformation du monde vivant au cours du temps, qui se manifeste par des changements phénotypiques des organismes à travers les générations. Ces changements général