Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Pulsatile jet propulsion is a highly energy-efficient swimming mode used by various species of aquatic animals that continues to inspire engineers of underwater vehicles. Here, we present a bio-inspired jet propulsor that combines the flexible hull of a jellyfish with the compression motion of a scallop to create individual vortex rings for thrust generation. Similar to the biological jetters, our propulsor generates a nonlinear time-varying exit velocity profile and has a finite volume capacity. The formation process of the vortices generated by this jet profile is analysed using time-resolved velocity field measurements. The transient development of the vortex properties is characterised based on the evolution of ridges in the finite-time Lyapunov exponent field and on local extrema in the pressure field derived from the velocity data. Special attention is directed toward the vortex merging observed in the trailing shear layer. During vortex merging, the Lagrangian vortex boundaries first contract in the streamwise direction before expanding in the normal direction to keep the non-dimensional energy at its minimum value, in agreement with the Kelvin–Benjamin variational principle. The circulation, diameter and translational velocity of the vortex increase due to merging. The vortex merging takes place because the velocity of the trailing vortex is higher than the velocity of the main vortex ring prior to merging. The comparison of the temporal evolution of the Lagrangian vortex boundaries and the pressure-based vortex delimiters confirms that features in the pressure field serve as accurate and robust observables for the vortex formation process.
Touradj Ebrahimi, Davi Nachtigall Lazzarotto, Bowen Huang
Touradj Ebrahimi, Michela Testolina, Davi Nachtigall Lazzarotto