Publication

Machine learning for metallurgy V: A neural-network potential for zirconium

Résumé

The mechanical performance-including deformation, fracture and radiation damage-of zirconium is determined at the atomic scale. With Zr and its alloys extensively used in the nuclear industry, understanding that atomic scale behavior is crucial. The defects controlling that performance are at size scales far larger than accessible by first principles methods, necessitating the use of semiempirical interatomic potentials. Existing potentials for Zr are not sufficiently quantitative, nor easily extendable to alloys, oxides, or hydrides. To overcome these issues, a neural network machine learning potential (NNP) is developed here within the Behler-Parrinello framework for Zr. With a careful choice of descriptors of the atomic environments and the creation of a first-principles training dataset that includes a wide spectrum of configurations of metallurgical relevance, a very accurate NNP is demonstrated. Specifically, the Zr NNP yields a good description of dislocation structures and their relative energies and fracture behavior, along with bulk, surface, and point-defect properties and structures, and significantly outperforms the best available traditional potentials. Results here will enable large-scale simulations of complex processes and provide the basis for future extensions to alloys, oxides, and hydrides.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (33)
Réseau de neurones artificiels
Un réseau de neurones artificiels, ou réseau neuronal artificiel, est un système dont la conception est à l'origine schématiquement inspirée du fonctionnement des neurones biologiques, et qui par la suite s'est rapproché des méthodes statistiques. Les réseaux de neurones sont généralement optimisés par des méthodes d'apprentissage de type probabiliste, en particulier bayésien.
Apprentissage automatique
L'apprentissage automatique (en anglais : machine learning, « apprentissage machine »), apprentissage artificiel ou apprentissage statistique est un champ d'étude de l'intelligence artificielle qui se fonde sur des approches mathématiques et statistiques pour donner aux ordinateurs la capacité d'« apprendre » à partir de données, c'est-à-dire d'améliorer leurs performances à résoudre des tâches sans être explicitement programmés pour chacune. Plus largement, il concerne la conception, l'analyse, l'optimisation, le développement et l'implémentation de telles méthodes.
Réseau neuronal convolutif
En apprentissage automatique, un réseau de neurones convolutifs ou réseau de neurones à convolution (en anglais CNN ou ConvNet pour convolutional neural networks) est un type de réseau de neurones artificiels acycliques (feed-forward), dans lequel le motif de connexion entre les neurones est inspiré par le cortex visuel des animaux. Les neurones de cette région du cerveau sont arrangés de sorte qu'ils correspondent à des régions qui se chevauchent lors du pavage du champ visuel.
Afficher plus
Publications associées (39)

Breaking the Curse of Dimensionality in Deep Neural Networks by Learning Invariant Representations

Leonardo Petrini

Artificial intelligence, particularly the subfield of machine learning, has seen a paradigm shift towards data-driven models that learn from and adapt to data. This has resulted in unprecedented advancements in various domains such as natural language proc ...
EPFL2023

How deep convolutional neural networks lose spatial information with training

Matthieu Wyart, Leonardo Petrini, Umberto Maria Tomasini, Francesco Cagnetta

A central question of machine learning is how deep nets manage to learn tasks in high dimensions. An appealing hypothesis is that they achieve this feat by building a representation of the data where information irrelevant to the task is lost. For image da ...
Bristol2023

Phase Retrieval: From Computational Imaging to Machine Learning: A tutorial

Michaël Unser, Thanh-An Michel Pham, Jonathan Yuelin Dong

Phase retrieval consists in the recovery of a complex-valued signal from intensity-only measurements. As it pervades a broad variety of applications, many researchers have striven to develop phase-retrieval algorithms. Classical approaches involve techniqu ...
2023
Afficher plus
MOOCs associés (15)
Neuronal Dynamics 2- Computational Neuroscience: Neuronal Dynamics of Cognition
This course explains the mathematical and computational models that are used in the field of theoretical neuroscience to analyze the collective dynamics of thousands of interacting neurons.
Neuronal Dynamics 2- Computational Neuroscience: Neuronal Dynamics of Cognition
This course explains the mathematical and computational models that are used in the field of theoretical neuroscience to analyze the collective dynamics of thousands of interacting neurons.
Neuronal Dynamics - Computational Neuroscience of Single Neurons
The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.