Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
The mechanical performance-including deformation, fracture and radiation damage-of zirconium is determined at the atomic scale. With Zr and its alloys extensively used in the nuclear industry, understanding that atomic scale behavior is crucial. The defects controlling that performance are at size scales far larger than accessible by first principles methods, necessitating the use of semiempirical interatomic potentials. Existing potentials for Zr are not sufficiently quantitative, nor easily extendable to alloys, oxides, or hydrides. To overcome these issues, a neural network machine learning potential (NNP) is developed here within the Behler-Parrinello framework for Zr. With a careful choice of descriptors of the atomic environments and the creation of a first-principles training dataset that includes a wide spectrum of configurations of metallurgical relevance, a very accurate NNP is demonstrated. Specifically, the Zr NNP yields a good description of dislocation structures and their relative energies and fracture behavior, along with bulk, surface, and point-defect properties and structures, and significantly outperforms the best available traditional potentials. Results here will enable large-scale simulations of complex processes and provide the basis for future extensions to alloys, oxides, and hydrides.
Matthieu Wyart, Leonardo Petrini, Umberto Maria Tomasini, Francesco Cagnetta
Michaël Unser, Thanh-An Michel Pham, Jonathan Yuelin Dong