Robustness and invariance properties of image classifiers
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
A common assumption in machine vision is that the training and test samples are drawn from the same distribution. However, there are many problems when this assumption is grossly violated, as in bio-medical applications where different acquisitions can gen ...
For many classification tasks, the ideal classifier should be invariant to geometric transformations such as changing the view angle. However, this cannot be said decisively for the state-of-the-art image classifiers, such as convolutional neural networks. ...
State-of-the-art deep neural networks have achieved impressive results on many image classification tasks. However, these same architectures have been shown to be unstable to small, well sought, perturbations of the images. Despite the importance of this p ...
Social media is emerging as a powerful source of communication, information dissemination and mining. Being colloquial and ubiquitous in nature makes it easier for users to express their opinions and preferences in a seamless, dynamic manner. Epidemic surv ...
Recent work has shown that state-of-the-art classifiers are quite brittle, in the sense that a small adversarial change of an originally with high confidence correctly classified input leads to a wrong classification again with high confidence. This raises ...
In the past decade, image classification systems have witnessed major advances that led to record performances on challenging datasets. However, little is known about the behavior of these classifiers when the data is subject to perturbations, such as rand ...
Pixel-level annotations are expensive and time consuming to obtain. Hence, weak supervision using only image tags could have a significant impact in semantic segmentation. Recently, CNN-based methods have proposed to fine-tune pre-trained networks using im ...
We study the problem of perceiving forest or mountain trails from a single monocular image acquired from the viewpoint of a robot traveling on the trail itself. Previous literature focused on trail segmentation, and used low-level features such as image sa ...
Invariance to geometric transformations is a highly desirable property of automatic classifiers in many image recognition tasks. Nevertheless, it is unclear to which extent state-of-the-art classifiers are invariant to basic transformations such as rotatio ...
The role of social media as a source of timely and massive information has become more apparent since the era of Web 2.0.Multiple studies illustrated the use of information in social media to discover biomedical and health-related knowledge.Most methods pr ...