Analyse de sensibilitéL’analyse de sensibilité est l'étude de la façon dont l'incertitude de la sortie d'un code ou d'un système (numérique ou autre) peut être attribuée à l'incertitude dans ses entrées. Il s'agit d'estimer des indices de sensibilité qui quantifient l'influence d'une entrée ou d'un groupe d'entrées sur la sortie. L'analyse de sensibilité peut être utile pour beaucoup d'applications: Tester la robustesse d'un modèle ou d'un système en présence d'incertitude.
Uncertainty quantificationUncertainty quantification (UQ) is the science of quantitative characterization and estimation of uncertainties in both computational and real world applications. It tries to determine how likely certain outcomes are if some aspects of the system are not exactly known. An example would be to predict the acceleration of a human body in a head-on crash with another car: even if the speed was exactly known, small differences in the manufacturing of individual cars, how tightly every bolt has been tightened, etc.
Tail value at riskTail value at risk (TVaR), also known as tail conditional expectation (TCE) or conditional tail expectation (CTE), is a risk measure associated with the more general value at risk. It quantifies the expected value of the loss given that an event outside a given probability level has occurred. There are a number of related, but subtly different, formulations for TVaR in the literature. A common case in literature is to define TVaR and average value at risk as the same measure.
Modèles ARCHEn économétrie, les modèles ARCH (AutoRegressive Conditional Heteroskedasticity) sont utilisés pour caractériser et modéliser des séries chronologiques. Ces modèles sont souvent appelés les modèles ARCH (Robert F. Engle, 1982), bien qu'une variété d'autres acronymes sont appliqués à des structures particulières du modèle qui ont une base similaire. Les modèles ARCH sont employés couramment dans la modélisation de séries temporelles financières, qui comportent des volatilités variables c'est-à-dire des périodes agitées suivies par des périodes de calme relatif.
Conditional independenceIn probability theory, conditional independence describes situations wherein an observation is irrelevant or redundant when evaluating the certainty of a hypothesis. Conditional independence is usually formulated in terms of conditional probability, as a special case where the probability of the hypothesis given the uninformative observation is equal to the probability without. If is the hypothesis, and and are observations, conditional independence can be stated as an equality: where is the probability of given both and .
Théorème de la variance totaleEn théorie des probabilités, le théorème de la variance totale ou formule de décomposition de la variance, aussi connu sous le nom de Loi d'Eve, stipule que si X et Y sont deux variables aléatoires sur un même espace de probabilité, et si la variance de Y est finie, alors Certains auteurs appellent cette relation formule de variance conditionnelle. Dans un langage peut-être mieux connu des statisticiens que des spécialistes en probabilité, les deux termes sont respectivement les composantes "non-expliquée" et "expliquée" de la variance (cf.