Publication

Model-based Systems Engineering Papers Analysis based on Word Cloud Visualization

Jinzhi Lu, Xiaochen Zheng
2022
Article de conférence
Résumé

With the continuous improvement of system scale and complexity, model-based system engineering (MBSE) is of great importance in the practice of system engineering (SE). MBSE has been widely concerned in industry, especially in the field of complex equipment. At the same time, in academia, research articles about MBSE come into being and grow rapidly. In this paper, keywords and full-texts of 143 high quality articles related to MBSE field are extracted from relevant journals of IEEE and INCOSE communities, and the research contents of MBSE field are visualized and analyzed by using a thirdparty Python WordCloud library. The research focuses on: (a) identifying related concepts of MBSE; (b) exploring research contents of MBSE; (c) analyzing three pillars of MBSE: modeling languages, methods and tools based on articles. The results show that MBSE plays an important role in realizing system architecture design and developing system architecture models by applying modeling technology to support system requirements, design, analysis and evaluation, verification and validation in the whole life cycle of product development. SysML and OPM are the most popular modeling languages and modeling methods in MBSE research field respectively. This paper provides a technical route reference for exploring the current research field of MBSE by using WordCloud text analysis which is helpful to predict the future research of MBSE.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.