Réseau neuronal résidueldroite|vignette| Forme canonique d'un réseau neuronal résiduel. Une couche l − 1 est ignoré sur l'activation de l − 2. Un réseau neuronal résiduel ( ResNet ) est un réseau neuronal artificiel (ANN). Il s'agit d'une variante du HighwayNet , le premier réseau neuronal à action directe très profond avec des centaines de couches, beaucoup plus profond que les réseaux neuronaux précédents. Les sauts de connexion ou "raccourcis" sont utilisés pour passer par-dessus certaines couches ( les HighwayNets peuvent également avoir des poids pour les saut eux-mêmes, grâce à une matrice de poids supplémentaire pour leurs portes).
Apprentissage par renforcementEn intelligence artificielle, plus précisément en apprentissage automatique, l'apprentissage par renforcement consiste, pour un agent autonome ( robot, agent conversationnel, personnage dans un jeu vidéo), à apprendre les actions à prendre, à partir d'expériences, de façon à optimiser une récompense quantitative au cours du temps. L'agent est plongé au sein d'un environnement et prend ses décisions en fonction de son état courant. En retour, l'environnement procure à l'agent une récompense, qui peut être positive ou négative.
Low (complexity)In computational complexity theory, a language B (or a complexity class B) is said to be low for a complexity class A (with some reasonable relativized version of A) if AB = A; that is, A with an oracle for B is equal to A. Such a statement implies that an abstract machine which solves problems in A achieves no additional power if it is given the ability to solve problems in B at unit cost. In particular, this means that if B is low for A then B is contained in A.
Moving Picture Experts GroupMPEG, sigle de Moving Picture Experts Group, est le groupe de travail du comité technique mixte de l’ISO et de la CEI pour les technologies de l’information. Ce groupe d’experts est chargé du développement de normes internationales pour la compression, la décompression, le traitement et le codage de la vidéo, de l’audio et de leur combinaison, de façon à satisfaire une large gamme d’applications. Faisant suite aux résultats obtenus avec la recommandation H.
Classe de complexitéEn informatique théorique, et plus précisément en théorie de la complexité, une classe de complexité est un ensemble de problèmes algorithmiques dont la résolution nécessite la même quantité d'une certaine ressource. Une classe est souvent définie comme l'ensemble de tous les problèmes qui peuvent être résolus sur un modèle de calcul M, utilisant une quantité de ressources du type R, où n, est la taille de l'entrée. Les classes les plus usuelles sont celles définies sur des machines de Turing, avec des contraintes de temps de calcul ou d'espace.
JPEGJPEG (sigle de Joint Photographic Experts Group) est une norme qui définit le format d'enregistrement et l'algorithme de décodage pour une représentation numérique compressée d'une image fixe. Les extensions de nom de fichiers les plus communes pour les fichiers employant la compression JPEG sont .jpg et .jpeg, cependant .jpe, .jfif et .jif furent aussi utilisées. JPEG est l’acronyme de Joint Photographic Experts Group. Il s'agit d'un comité d’experts qui édicte des normes de compression pour l’image fixe.
Retouche numériqueImage editing encompasses the processes of altering s, whether they are digital photographs, traditional photo-chemical photographs, or illustrations. Traditional analog image editing is known as photo retouching, using tools such as an airbrush to modify photographs or editing illustrations with any traditional art medium. Graphic software programs, which can be broadly grouped into vector graphics editors, raster graphics editors, and 3D modelers, are the primary tools with which a user may manipulate, enhance, and transform images.
Apprentissage par renforcement profondL'apprentissage par renforcement profond (en anglais : deep reinforcement learning ou deep RL) est un sous-domaine de l'apprentissage automatique (en anglais : machine learning) qui combine l'apprentissage par renforcement et l'apprentissage profond (en anglais : deep learning). L'apprentissage par renforcement considère le problème d'un agent informatique (par exemple, un robot, un agent conversationnel, un personnage dans un jeu vidéo, etc.) qui apprend à prendre des décisions par essais et erreurs.
Computational complexityIn computer science, the computational complexity or simply complexity of an algorithm is the amount of resources required to run it. Particular focus is given to computation time (generally measured by the number of needed elementary operations) and memory storage requirements. The complexity of a problem is the complexity of the best algorithms that allow solving the problem. The study of the complexity of explicitly given algorithms is called analysis of algorithms, while the study of the complexity of problems is called computational complexity theory.
RAW (format d'image)thumb|Fonctionnement de la matrice de Bayer. Raw est la désignation générique d'un type de fichier d' issues d’appareils photo numériques ou de scanners. Un fichier Raw contient les données brutes du capteur et les paramètres nécessaires à la transformation en fichier image visible sur écran. Le fichier est plus volumineux que celui au format JPEG, servant le plus souvent à la communication des images, mais il n'a pas subi de transformations irréversibles, ce qui permet de retravailler sans dommage.