**Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?**

Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur GraphSearch.

Publication# Strong lensing in UNIONS: Toward a pipeline from discovery to modeling

Hung-Hsu Chan, Benjamin Yvan Alexandre Clement, Frédéric Courbin, Cameron Alexander Campbell Lemon, Karina Alexandra Rojas Olate, Elodie Marie Charlène Savary, Georgios Vernardos

*EDP SCIENCES S A, *2022

Article

Article

Résumé

We present a search for galaxy-scale strong gravitational lenses in the initial 2500 square degrees of the Canada-France Imaging Survey (CFIS). We designed a convolutional neural network (CNN) committee that we applied to a selection of 2 344 002 r-band images of color-selected luminous red galaxies. Our classification uses a realistic training set where the lensing galaxies and the lensed sources are both taken from real data, namely the CFIS r-band images themselves and the Hubble Space Telescope (HST). A total of 9460 candidates obtain a score above 0.5 with the CNN committee. After a visual inspection of the candidates, we find a total of 133 lens candidates, of which 104 are completely new. The set of false positives mainly contains ring, spiral, and merger galaxies, and to a lesser extent galaxies with nearby companions. We classify 32 of the lens candidates as secure lenses and 101 as maybe lenses. For the 32 highest quality lenses, we also fit a singular isothermal ellipsoid mass profile with external shear along with an elliptical Sersic profile for the lens and source light. This automated modeling step provides distributions of properties for both sources and lenses that have Einstein radii in the range 0.5 '' < theta(E) < 2.5 ''. Finally, we introduce a new lens and/or source single-band deblending algorithm based on auto-encoder representation of our candidates. This is the first time an end-to-end lens-finding and modeling pipeline is assembled together, in view of future lens searches in a single band, as will be possible with Euclid.

Official source

Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Concepts associés

Chargement

Publications associées

Chargement

Publications associées (18)

Chargement

Chargement

Chargement

Concepts associés (10)

Lentille gravitationnelle

En astrophysique, une lentille gravitationnelle, ou mirage gravitationnel, est produit par la présence d'un corps céleste très massif (tel, par exemple, un amas de galaxies) se situant entre un obse

Hubble (télescope spatial)

(Hubble Space Telescope, en abrégé ou, rarement en français, TSH) est un télescope spatial conçu par la NASA avec une participation de l'Agence spatiale européenne, opérationnel depuis 1990. Son mir

Lentille gravitationnelle forte

vignette|Photographie d'un anneau d'Einstein prise par le télescope spatial Hubble.
Les lentilles gravitationnelles fortes sont un type de lentilles gravitationnelles qui sont assez fortes pour produi

Frédéric Courbin, Georges Meylan, Malte Tewes

Strong gravitational lenses with measured time delays between the multiple images and models of the lens mass distribution allow a one-step determination of the time-delay distance, and thus a measure of cosmological parameters. We present a blind analysis of the gravitational lens RXJ1131-1231 incorporating (1) the newly measured time delays from COSMOGRAIL, the COSmological MOnitoring of GRAvItational Lenses, (2) archival Hubble Space Telescope imaging of the lens system, (3) a new velocity-dispersion measurement of the lens galaxy of 323 +/- 20 km s(-1) based on Keck spectroscopy, and (4) a characterization of the line-of-sight structures via observations of the lens' environment and ray tracing through the Millennium Simulation. Our blind analysis is designed to prevent experimenter bias. The joint analysis of the data sets allows a time-delay distance measurement to 6% precision that takes into account all known systematic uncertainties. In combination with the Wilkinson Microwave Anisotropy Probe seven-year (WMAP7) data set in flat wCDM cosmology, our unblinded cosmological constraints for RXJ1131-1231 are H-0 = 80.0(-5.7)(+5.8) km s(-1) Mpc(-1), Omega(de) = 0.79 +/- 0.03, and w = -1.25(-0.21)(+0.17). We find the results to be statistically consistent with those from the analysis of the gravitational lens B1608+ 656, permitting us to combine the inferences from these two lenses. The joint constraints from the two lenses and WMAP7 are H-0 = 75.2(-4.2)(+4.4) km s(-1) Mpc(-1), Omega(de) = 0.76(-0.03)(+0.02), and w = -1.14(-0.20)(+0.17) in flat wCDM, and H-0 = 73.1(-3.6)(+2.4) km s(-1) Mpc(-1), Omega(Lambda) = 0.75(-0.02)(+0.01), and Omega(k) = 0.003(-0.006)(+0.005) in open Lambda CDM. Time-delay lenses constrain especially tightly the Hubble constant H0 (5.7% and 4.0% respectively in wCDM and open Lambda CDM) and curvature of the universe. The overall information content is similar to that of Baryon Acoustic Oscillation experiments. Thus, they complement well other cosmological probes, and provide an independent check of unknown systematics. Our measurement of the Hubble constant is completely independent of those based on the local distance ladder method, providing an important consistency check of the standard cosmological model and of general relativity.

, ,

We present the results of a visual search for galaxy-scale gravitational lenses in similar to 7 deg(2) of Hubble Space Telescope (HST) images. The data set comprises the whole imaging data ever taken with the Advanced Camera for Surveys (ACS) in the filter F814W (I-band) up to 2011 August 31, i.e. 6.03 deg(2) excluding the field of the Cosmic Evolution Survey which has been the subject of a separate visual search. In addition, we have searched for lenses in the whole Wide Field Camera 3 (WFC3) near-IR imaging data set in all filters (1.01 deg(2)) up to the same date. Our primary goal is to provide a sample of lenses with a broad range of different morphologies and lens-source brightness contrast in order to estimate a lower limit to the number of galaxy-scale strong lenses in the future Euclid survey in its VIS band. Our criteria to select lenses are purely morphological as we do not use any colour or redshift information. The final candidate selection is very conservative hence leading to a nearly pure but incomplete sample. We find 49 new lens candidates: 40 in the ACS images and 9 in the WFC3 images. Out of these, 16 candidates are secure lenses owing to their striking morphology, 21 more are very good candidates and 12 more have morphologies compatible with gravitational lensing but also compatible with other astrophysical objects such as ring and chain galaxies or mergers. Interestingly, some lens galaxies include low surface brightness galaxies, compact groups and mergers. The imaging data set is heterogeneous in depth and spans a broad range of galactic latitudes. It is therefore insensitive to cosmic variance and allows us to estimate the number of galaxy-scale strong lenses on the sky for a putative survey depth, which is the main result of this work. Because of the incompleteness of the sample, the estimated lensing rates should be taken as lower limits. Using these, we anticipate that a 15 000 deg(2) space survey such as Euclid will find at least 60 000 galaxy-scale strong lenses down to a limiting AB magnitude of I = 24.5 (10 Sigma) or I = 25.8 (3 Sigma).

We measure the average mass properties of a sample of 41 strong gravitational lenses at moderate redshift (z similar to 0.4-0.9) and present the lens redshift for six of these galaxies for the first time. Using the techniques of strong and weak gravitational lensing on archival data obtained from the Hubble Space Telescope, we determine that the average mass overdensity profile of the lenses can be fit with a power-law profile (Delta Sigma proportional to R-0.86 +/- 0.16) that is within 1 sigma of an isothermal profile (Delta Sigma proportional to R-1) with velocity dispersion sigma(upsilon) = 260 +/- 20 km s(-1). Additionally, we use a two-component de Vaucouleurs + Navarro-Frenk-White (NFW) model to disentangle the total mass profile into separate luminous and dark matter components and determine the relative fraction of each component. We measure the average rest frame V-band stellar mass-to-light ratio (gamma(V) = 4.0 +/- 0.6hM(circle dot)/L-circle dot) and virial mass-to-light ratio (tau(V) = 300 +/- 90h M-circle dot/L-circle dot) for our sample, resulting in a virial-to-stellar mass ratio of M-vir/M-* = 75 +/- 25. Relaxing the NFW assumption, we estimate that changing the inner slope of the dark matter profile by similar to 20% yields a similar to 30% change in stellar mass-to-light ratio. Finally, we compare our results to a previous study using low-redshift lenses to understand how galaxy mass profiles evolve over time. We investigate the evolution of M-vir/M-*(z) = alpha(1 + z)(beta), and find best-fit parameters of alpha = 51 +/- 36 and beta = 0.9 +/- 1.8, constraining the growth of virial-to-stellar mass ratio over the last similar to 7 Gyr. We note that, by using a sample of strong lenses, we are able to constrain the growth of M-vir/M-*(z) without making any assumptions about the initial mass function of the stellar population.

2010