Publication

Time-evolution of local information: Thermalization dynamics of local observables

Publications associées (44)

Quantum Protocols for ML, Physics, and Finance

Grzegorz Adam Gluch

In this thesis, we give new protocols that offer a quantum advantage for problems in ML, Physics, and Finance.Quantum mechanics gives predictions that are inconsistent with local realism.The experiment proving this fact (Bell, 1964) gives a quantum protoco ...
EPFL2024

Adaptive projected variational quantum dynamics

Giuseppe Carleo, Stefano Barison, David Linteau

We propose an adaptive quantum algorithm to prepare accurate variational time evolved wave functions. The method is based on the projected variational quantum dynamics (pVQD) algorithm, that performs a global optimization with linear scaling in the number ...
Amer Physical Soc2024

Dual-frame optimization for informationally complete quantum measurements

Ivano Tavernelli

Randomized measurement protocols such as classical shadows represent powerful resources for quantum technologies, with applications ranging from quantum state characterization and process tomography to machine learning and error mitigation. Recently, the n ...
2024

Room-Temperature Quantum Optomechanics and Free-Electron Quantum Optics

Guanhao Huang

Quantum optics studies how photons interact with other forms of matter, the understanding of which was crucial for the development of quantum mechanics as a whole. Starting from the photoelectric effect, the quantum property of light has led to the develop ...
EPFL2024

Scalable Quantum Algorithms for Noisy Quantum Computers

Julien Sebastian Gacon

Quantum computing not only holds the potential to solve long-standing problems in quantum physics, but also to offer speed-ups across a broad spectrum of other fields. Access to a computational space that incorporates quantum effects, such as superposition ...
EPFL2024

Overhead-constrained circuit knitting for variational quantum dynamics

Giuseppe Carleo, Gian Florin Gentinetta, Friederike Metz

Simulating the dynamics of large quantum systems is a formidable yet vital pursuit for obtaining a deeper understanding of quantum mechanical phenomena. While quantum computers hold great promise for speeding up such simulations, their practical applicatio ...
Verein Forderung Open Access Publizierens Quantenwissenschaf2024

Ultra-high quantum coherent and scalable superconducting circuit optomechanics, from topological lattices to quantum storage

Amir Youssefi

Mechanical oscillators can exhibit modes with ultra-low energy dissipation and compact form factors due to the slow velocity of acoustic waves, and are already used in applications ranging from timing to wireless filters. Over the past decade, novel ways i ...
EPFL2024

Variational quantum time evolution without the quantum geometric tensor

Giuseppe Carleo, Riccardo Rossi, Julien Sebastian Gacon, Jannes Willy E. Nys, Stefan Woerner

Realand imaginary -time quantum state evolutions are crucial in physics and chemistry for exploring quantum dynamics, preparing ground states, and computing thermodynamic observables. On near -term devices, variational quantum time evolution is a promising ...
College Pk2024

Unbiasing time-dependent Variational Monte Carlo by projected quantum evolution

Giuseppe Carleo, Clemens Giuliani, Alessandro Sinibaldi, Filippo Vicentini

We analyze the accuracy and sample complexity of variational Monte Carlo approaches to simulate the dynamics of many-body quantum systems classically. By systematically studying the relevant stochastic estimators, we are able to: (i) prove that the most us ...
Wien2023

Emergence of Classical Magnetic Order from Anderson Towers: Quantum Darwinism in Action

Frédéric Mila

Environment is assumed to play a negative role in quantum mechanics, destroying the coherence in a quantum system and, thus, randomly changing its state. However, for a quantum system that is initially in a degenerate ground state, the situation could be d ...
College Pk2023

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.