Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
This paper presents a novel activity-based demand model that combines an optimisation framework for continuous temporal scheduling decisions (i.e. activity timings and durations) with traditional discrete choice models for non-temporal choice dimensions (i.e. activity participation, number and type of tours, and destinations). The central idea of our approach is that individuals resolve temporal scheduling conflicts that arise from overlapping activities, e.g. needing to work and desiring to shop at the same time, in order to maximise their daily utility. Flexibility parameters capture behavioural preferences that penalise deviations from desired timings. This framework has three advantages over existing activity-based modelling approaches: (i) the time conflicts between different temporal scheduling decisions including the activity sequence are treated jointly; (ii) flexibility parameters follow a utility maximisation approach; and (iii) the framework can be used to estimate and simulate a city-scale case study in reasonable time. We introduce an estimation routine that allows flexibility parameters to be estimated using real-world observations as well as a simulation routine to efficiently resolve temporal conflicts using an optimisation model. The framework is applied to the full-time workers of a synthetic population for the city of Lausanne, Switzerland. We validate the model results against reported schedules. The results demonstrate the capabilities of our approach to reproduce empirical observations in a real-world case study.
, ,