Self-supervised Segmentation via Background Inpainting
Publications associées (39)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
While annotated images for change detection using satellite imagery are scarce and costly to obtain, there is a wealth of unlabeled images being generated every day. In order to leverage these data to learn an image representation more adequate for change ...
In this study, we present the deep learning image segmentation model for drone-based grain size analysis of gravel bars called GALET. The objectives are to quantify the performance of the code and to test its applicability in river research and management. ...
International Association for Hydro-Environment Engineering and Research (IAHR)2022
, , ,
Self-supervised detection and segmentation of foreground objects aims for accuracy without annotated training data. However, existing approaches predominantly rely on restrictive assumptions on appearance and motion. For scenes with dynamic activities and ...
IEEE2021
Machine learning has become the state of the art for the solution of the diverse inverse problems arising from computer vision and medical imaging, e.g. denoising, super-resolution, de-blurring, reconstruction from scanner data, quantitative magnetic reson ...
EPFL2022
Semantic segmentation consists of the generation of a categorical map, given an image in which each pixel of the image is automatically assigned a class. Deep learning allows the influence of the pixel's context to be learned by capturing the non-linear re ...
Wiley2021
,
Despite their irresistible success, deep learning algorithms still heavily rely on annotated data, and unsupervised settings pose many challenges, such as finding the right inductive bias in diverse scenarios. In this paper, we propose an object-centric mo ...
IEEE2021
Over the past few years, there have been fundamental breakthroughs in core problems in machine learning, largely driven by advances in deep neural networks. The amount of annotated data drastically increased and supervised deep discriminative models exceed ...
EPFL2020
Stereo reconstruction is a problem of recovering a 3d structure of a scene from a pair of images of the scene, acquired from different viewpoints. It has been investigated for decades and many successful methods were developed.The main drawback of these ...
EPFL2020
Stereo matching aims to perceive the 3D geometric configuration of scenes and facilitates a variety of computer vision in advanced driver assistance systems (ADAS) applications. Recently, deep convolutional neural networks (CNNs) have shown dramatic perfor ...
Most state-of-the-art approaches to road extraction from aerial images rely on a CNN trained to label road pixels as foreground and remainder of the image as background. The CNN is usually trained by minimizing pixel-wise losses, which is less than ideal t ...