Publication

OESPG: Computational Framework for Multidimensional Analysis of Occupant Energy Use Data in Commercial Buildings

Andrew James Sonta
2017
Article
Résumé

Commercial buildings account for much of the energy use both in the United States and globally. The role of occupant behavior within the physical building has been found to be an important factor in the overall energy use profile of commercial buildings. Recent research has noted the potential energy savings that can be achieved when occupant behavior is beneficially modified. However, frameworks for analyzing occupant behavior are limited in their ability to simultaneously consider three key dimensions of occupant-driven energy use in buildings: spatial, temporal, and social. This paper presents the occupant energy signal processing on graphs (OESPG) framework, which is able to address the three key dimensions of occupant energy use in commercial buildings through an inherently scalable mathematical structure. The mechanics, applicability, and merits of the OESPG framework are demonstrated by applying it to occupant energy use data through both a simulated example and real test-bed data from a commercial office building. The OESPG framework able to identify situations in which occupant energy use through plug loads is out of sync with what would be expected based on nuanced spatial and organizational aspects. Additionally, the feasibility of using this framework to make recommendations for temporal and spatial occupancy shifts that would have a positive impact on occupant energy use is noted.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.