Deepfakevignette|Deepfake sur Kim Jong-Un. Le deepfake , ou hypertrucage, est une technique de synthèse multimédia reposant sur l'intelligence artificielle. Elle peut servir à superposer des fichiers vidéo ou audio existants sur d'autres fichiers vidéo (par exemple changer le visage d'une personne sur une vidéo) ou audio (par exemple reproduire la voix d'une personne pour lui faire dire des choses inventées). Cette technique peut être utilisée pour créer des infox et des canulars malveillants.
Audio deepfakeAn audio deepfake (also known as voice cloning) is a type of artificial intelligence used to create convincing speech sentences that sound like specific people saying things they did not say. This technology was initially developed for various applications to improve human life. For example, it can be used to produce audiobooks, and also to help people who have lost their voices (due to throat disease or other medical problems) to get them back. Commercially, it has opened the door to several opportunities.
Évaluation formativeLes concepts d’évaluation formative et sommative ont été apportés par Michael Scriven en 1967, dans le contexte de l’évaluation de programmes éducatifs (curriculum evaluation). Pour Scriven, une évaluation formative devait permettre à un établissement scolaire d’estimer la capacité de ses programmes scolaires à atteindre leurs objectifs, de façon à guider les choix de l’école pour les améliorer progressivement, au contraire d’une évaluation sommative qui cherche à poser un jugement final sur les programmes : « marchent-ils » ou pas ? Et en conséquence, faut-il les maintenir, les étendre ou les abandonner ? Benjamin Bloom reprend dans les années suivantes cette distinction pour l’appliquer au processus d’apprentissage, notamment dans son ouvrage Handbook on formative and summative evaluation of student learning.
Educational assessmentEducational assessment or educational evaluation is the systematic process of documenting and using empirical data on the knowledge, skill, attitudes, aptitude and beliefs to refine programs and improve student learning. Assessment data can be obtained from directly examining student work to assess the achievement of learning outcomes or can be based on data from which one can make inferences about learning. Assessment is often used interchangeably with test, but not limited to tests.
Réseau neuronal convolutifEn apprentissage automatique, un réseau de neurones convolutifs ou réseau de neurones à convolution (en anglais CNN ou ConvNet pour convolutional neural networks) est un type de réseau de neurones artificiels acycliques (feed-forward), dans lequel le motif de connexion entre les neurones est inspiré par le cortex visuel des animaux. Les neurones de cette région du cerveau sont arrangés de sorte qu'ils correspondent à des régions qui se chevauchent lors du pavage du champ visuel.
Intelligence artificielle générativeL'intelligence artificielle générative ou IA générative (ou GenAI) est un type de système d'intelligence artificielle (IA) capable de générer du texte, des images ou d'autres médias en réponse à des invites (ou "prompts"). Les modèles génératifs apprennent les modèles et la structure des données d'entrée, puis génèrent un nouveau contenu similaire aux données d'apprentissage mais avec un certain degré de nouveauté (plutôt que de simplement classer ou prédire les données).
Réseau neuronal résidueldroite|vignette| Forme canonique d'un réseau neuronal résiduel. Une couche l − 1 est ignoré sur l'activation de l − 2. Un réseau neuronal résiduel ( ResNet ) est un réseau neuronal artificiel (ANN). Il s'agit d'une variante du HighwayNet , le premier réseau neuronal à action directe très profond avec des centaines de couches, beaucoup plus profond que les réseaux neuronaux précédents. Les sauts de connexion ou "raccourcis" sont utilisés pour passer par-dessus certaines couches ( les HighwayNets peuvent également avoir des poids pour les saut eux-mêmes, grâce à une matrice de poids supplémentaire pour leurs portes).
Apprentissage profondL'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.
Réseau de neurones à propagation avantUn réseau de neurones à propagation avant, en anglais feedforward neural network, est un réseau de neurones artificiels acyclique, se distinguant ainsi des réseaux de neurones récurrents. Le plus connu est le perceptron multicouche qui est une extension du premier réseau de neurones artificiel, le perceptron inventé en 1957 par Frank Rosenblatt. vignette|Réseau de neurones à propagation avant Le réseau de neurones à propagation avant est le premier type de réseau neuronal artificiel conçu. C'est aussi le plus simple.
Réseau de neurones artificielsUn réseau de neurones artificiels, ou réseau neuronal artificiel, est un système dont la conception est à l'origine schématiquement inspirée du fonctionnement des neurones biologiques, et qui par la suite s'est rapproché des méthodes statistiques. Les réseaux de neurones sont généralement optimisés par des méthodes d'apprentissage de type probabiliste, en particulier bayésien.