CovNet: Covariance networks for functional data on multidimensional domains
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
The present paper is the third and last part of an investigation on what determines reliability in fuel cell model identification. In continuation to the effect of experimental design (Part I) and a process method for stochastic calculation of a model's pa ...
A prominent parameter in dealing with swash and morphological evolution is the runup length or height, defined as the limit of landward sea. Therefore, it is necessary to predict the runup height in this area. In this paper, the abilities of a new Adaptive ...
We propose a new system-level abstraction, the lightweight immutable execution snapshot, which combines the immutable characteristics of checkpoints with the direct integration into the virtual memory subsystem of standard mutable address spaces. The abstr ...
Principal Component Analysis (PCA) has been widely used for manifold description and dimensionality reduction. Performance of PCA is however hampered when data exhibits nonlinear feature relations. In this work, we propose a new framework for manifold lear ...
In distributed processing, agents generally collect data generated by the same underlying unknown model (represented by a vector of parameters) and then solve an estimation or inference task cooperatively. In this paper, we consider the situation in which ...
Inference from data is of key importance in many applications of informatics. The current trend in performing such a task of inference from data is to utilise machine learning algorithms. Moreover, in many applications that it is either required or is pref ...
This paper investigates the use of a hierarchy of Neural Networks for performing data driven feature extraction. Two different hierarchical structures based on long and short temporal context are considered. Features are tested on two different LVCSR syste ...
Inferences related to the second-order properties of functional data, as expressed by covariance structure, can become unreliable when the data are non-Gaussian or contain unusual observations. In the functional setting, it is often difficult to identify a ...
This paper completes the study presented in the accompanying paper, and demonstrates a numerical algorithm for parameter prediction from the piezocone test (CPTU) data. This part deals with a development of neural network (NN) models which are able to map ...
This paper investigates the use of a hierarchy of Neural Networks for performing data driven feature extraction. Two different hierarchical structures based on long and short temporal context are considered. Features are tested on two different LVCSR syste ...