Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
We consider the problem of parameter estimation in a Bayesian setting and propose a general lower-bound that includes part of the family of f-Divergences. The results are then applied to specific settings of interest and compared to other notable results in the literature. In particular, we show that the known bounds using Mutual Information can be improved by using, for example, Maximal Leakage, Hellinger divergence, or generalizations of the Hockey-Stick divergence.
Michael Christoph Gastpar, Amedeo Roberto Esposito
Michael Christoph Gastpar, Amedeo Roberto Esposito, Ibrahim Issa