Leveraging Self-Supervision for Cross-Domain Crowd Counting
Publications associées (34)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
This thesis consists of three applications of machine learning techniques to empirical asset pricing.In the first part, which is co-authored work with Oksana Bashchenko, we develop a new method that detects jumps nonparametrically in financial time series ...
In several machine learning settings, the data of interest are well described by graphs. Examples include data pertaining to transportation networks or social networks. Further, biological data, such as proteins or molecules, lend themselves well to graph- ...
In this paper we propose an unsupervised feature extraction method to capture temporal information on monocular videos, where we detect and encode subject of interest in each frame and leverage contrastive self-supervised (CSS) learning to extract rich lat ...
The way our brain learns to disentangle complex signals into unambiguous concepts is fascinating but remains largely unknown. There is evidence, however, that hierarchical neural representations play a key role in the cortex. This thesis investigates biolo ...
We present a discriminative clustering approach in which the feature representation can be learned from data and moreover leverage labeled data. Representation learning can give a similarity-based clustering method the ability to automatically adapt to an ...
While deep neural networks are state-of-the-art models of many parts of the human visual system, here we show that they fail to process global information in a humanlike manner. First, using visual crowding as a probe into global visual information process ...
Classic image-restoration algorithms use a variety of priors, either implicitly or explicitly. Their priors are hand-designed and their corresponding weights are heuristically assigned. Hence, deep learning methods often produce superior image restoration ...
Deep neural networks have achieved impressive results in many image classification tasks. However, since their performance is usually measured in controlled settings, it is important to ensure that their decisions remain correct when deployed in noisy envi ...
Flood prediction in ungauged catchments is usually conducted by hydrological models that are parameterized based on nearby and similar gauged catchments. As an alternative to this process-based modelling, deep learning (DL) models have demonstrated their a ...
Training deep neural network based Automatic Speech Recognition (ASR) models often requires thousands of hours of transcribed data, limiting their use to only a few languages. Moreover, current state-of-the-art acoustic models are based on the Transformer ...