Acceleration of gossip algorithms through the Euler-Poisson-Darboux Equation
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
The transmission eigenvalue problem is a system of two second-order elliptic equations of two unknowns equipped with the Cauchy data on the boundary. In this work, we establish the Weyl law for the eigenvalues and the completeness of the generalized eigenf ...
We consider the problem of nonparametric estimation of the drift and diffusion coefficients of a Stochastic Differential Equation (SDE), based on n independent replicates {Xi(t) : t is an element of [0 , 1]}13 d B(t), where alpha is an element of {0 , 1} a ...
We consider the defocusing nonlinear wave equation ❑u D jujp ⠀1u in R3 ⠂ & UOELIG;0; 1/. We prove that for any initial datum with a scaling-subcritical norm bounded by M0 the equation is globally well-posed for p D 5 C i, where i 2 .0; ...
Global spectral methods offer the potential to compute solutions of partial differential equations numerically to very high accuracy. In this work, we develop a novel global spectral method for linear partial differential equations on cubes by extending th ...
Finite elements methods (FEMs) have benefited from decades of development to solve partial differential equations (PDEs) and to simulate physical systems. In the recent years, machine learning (ML) and artificial neural networks (ANN) have shown great pote ...
This thesis focuses on the numerical analysis of partial differential equations (PDEs) with an emphasis on first and second-order fully nonlinear PDEs. The main goal is the design of numerical methods to solve a variety of equations such as orthogonal maps ...
The null controllability of the heat equation is known for decades [21, 25, 34]. The finite time stabilizability of the one dimensional heat equation was proved by Coron-Nguyên [15], while the same question for high dimensional spaces remained widely open. ...
Metallic aluminium plays a key role in our modern economy. Primary
metallic aluminium is produced by the transformation of aluminium
oxide using the Hall-Héroult industrial process. This process, which
requires enormous quantities of energy, consists in pe ...
We revisit the rapid stabilization of the heat equation on the 1-dimensional torus using the backstepping method with a Fredholm transformation. We prove that, under some assumption on the control operator, two scalar controls are necessary and sufficient ...
We establish a sharp estimate on the negative moments of the smallest eigenvalue of the Malliavin matrix gamma z of Z := (u(s, y), u(t , x) - u(s, y)), where u is the solution to a system of d non-linear stochastic heat equations in spatial dimension k >= ...