Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Orthogonal group synchronization is the problem of estimating n elements Z(1),& mldr;,Z(n) from the rxr orthogonal group given some relative measurements R-ij approximate to Z(i)Z(j)(-1). The least-squares formulation is nonconvex. To avoid its local minima, a Shor-type convex relaxation squares the dimension of the optimization problem from O(n) to O(n(2)). Alternatively, Burer-Monteiro-type nonconvex relaxations have generic landscape guarantees at dimension O(n(3/2)). For smaller relaxations, the problem structure matters. It has been observed in the robotics literature that, for simultaneous localization and mapping problems, it seems sufficient to increase the dimension by a small constant multiple over the original. We partially explain this. This also has implications for Kuramoto oscillators. Specifically, we minimize the least-squares cost function in terms of estimators Y-1,& mldr;,Y-n. For p >= r, each Y-i is relaxed to the Stiefel manifold St(r,p) of r x p matrices with orthonormal rows. The available measurements implicitly define a (connected) graph G on n vertices. In the noiseless case, we show that, for all connected graphs G, second-order critical points are globally optimal as soon as p >= r +2. (This implies that Kuramoto oscillators on St(r,p) synchronize for all p >= r +2.) This result is the best possible for general graphs; the previous best known result requires 2p >= 3(r+1). For p > r+2, our result is robust to modest amounts of noise (depending on p and G). Our proof uses a novel randomized choice of tangent direction to prove (near-)optimality of second-order critical points. Finally, we partially extend our noiseless landscape results to the complex case (unitary group); we show that there are no spurious local minima when 2p >= 3r.