Student-centered learningStudent-centered learning, also known as learner-centered education, broadly encompasses methods of teaching that shift the focus of instruction from the teacher to the student. In original usage, student-centered learning aims to develop learner autonomy and independence by putting responsibility for the learning path in the hands of students by imparting to them skills, and the basis on how to learn a specific subject and schemata required to measure up to the specific performance requirement.
Apprentissage par renforcement profondL'apprentissage par renforcement profond (en anglais : deep reinforcement learning ou deep RL) est un sous-domaine de l'apprentissage automatique (en anglais : machine learning) qui combine l'apprentissage par renforcement et l'apprentissage profond (en anglais : deep learning). L'apprentissage par renforcement considère le problème d'un agent informatique (par exemple, un robot, un agent conversationnel, un personnage dans un jeu vidéo, etc.) qui apprend à prendre des décisions par essais et erreurs.
Apprentissage par problèmesDans l'apprentissage par problèmes (APP), ou apprentissage par résolution de problèmes, les apprenants, regroupés par équipes, travaillent ensemble à résoudre un problème généralement proposé par l'enseignant, problème pour lequel ils n'ont reçu aucune formation particulière, de façon à faire des apprentissages de contenu et de savoir-faire, à découvrir des notions nouvelles de façon active (il s’instruit lui-même) en y étant poussé par les nécessités du problème soumis.
Recherche empiriqueLa recherche empirique explore le monde sensible en s'appuyant sur l’expérimentation, l’observation, ainsi que sur un processus d'évaluation par les pairs qui permet de faire un tri dans les connaissances scientifiques produites et de ne garder, au fil du temps, que ce qui reste valide. Il existe deux types de sciences empiriques : les sciences humaines et sociales ainsi que les sciences naturelles. Le raisonnement empirique se déroule en différentes étapes qui se répètent, c'est pourquoi on parle même de cycle de raisonnement.
Système d'informationalt=Monitoring d'un système d'information de contrôle du trafic aérien|vignette|363x363px|Monitoring d'un système d'information de contrôle du trafic aérien Le système d'information (SI) est un ensemble organisé de ressources qui permet de collecter, stocker, traiter et distribuer de l'information, en général grâce à un réseau d'ordinateurs. Il s'agit d'un système socio-technique composé de deux sous-systèmes, l'un social et l'autre technique. Le sous-système social est composé de la structure organisationnelle et des personnes liées au SI.
AnalyticsAnalytics is the systematic computational analysis of data or statistics. It is used for the discovery, interpretation, and communication of meaningful patterns in data. It also entails applying data patterns toward effective decision-making. It can be valuable in areas rich with recorded information; analytics relies on the simultaneous application of statistics, computer programming, and operations research to quantify performance. Organizations may apply analytics to business data to describe, predict, and improve business performance.
Technologie de l'informationLa technologie de l'information (TI), ou IT pour « information technology » en anglais, appelée aussi système informatique, désigne le domaine technique du traitement de l'information, souvent dans un contexte professionnel. Ce domaine a été soumis à un accord de libre échange par l'OMC appelé accord sur les technologies de l'information. Avec la numérisation des systèmes de communication et pour tenir compte de l'intégration de leur gestion aux technologies de l'information, le monde universitaire utilise l'expression « Technologies de l'information et de la communication » (TIC).
Gestion stratégique de l'informationLa gestion stratégique de l'information (GSI ou information management en anglais) est une approche ou une philosophie dans la façon d'acquérir, de colliger, d'organiser, de conserver, de protéger et de communiquer l'information, que ce soit sous forme de documents divers ou d’informations tacites, dans les organisations, notamment les entreprises. Il s'agit essentiellement d'orienter et de penser ses activités d'acquisition, d'organisation et de redistribution de l'information de sorte qu'elles permettent à une organisation d’être le plus efficace possible en fonction de ses objectifs stratégiques.
Q-learningvignette|400x400px|Dans le Q-learning, l'agent exécute une action a en fonction de l'état s et d'une fonction Q. Il perçoit alors le nouvel état s' et une récompense r de l'environnement. Il met alors à jour la fonction Q. Le nouvel état s' devient alors l'état s, et l'apprentissage continue. En intelligence artificielle, plus précisément en apprentissage automatique, le Q-learning est un algorithme d'apprentissage par renforcement. Il ne nécessite aucun modèle initial de l'environnement.
Graph embeddingIn topological graph theory, an embedding (also spelled imbedding) of a graph on a surface is a representation of on in which points of are associated with vertices and simple arcs (homeomorphic images of ) are associated with edges in such a way that: the endpoints of the arc associated with an edge are the points associated with the end vertices of no arcs include points associated with other vertices, two arcs never intersect at a point which is interior to either of the arcs. Here a surface is a compact, connected -manifold.