Apprentissage de représentationsEn apprentissage automatique, l'apprentissage des caractéristiques ou apprentissage des représentations est un ensemble de techniques qui permet à un système de découvrir automatiquement les représentations nécessaires à la détection ou à la classification des caractéristiques à partir de données brutes. Cela remplace l'ingénierie manuelle des fonctionnalités et permet à une machine d'apprendre les fonctionnalités et de les utiliser pour effectuer une tâche spécifique.
Méthode itérativeEn analyse numérique, une méthode itérative est un procédé algorithmique utilisé pour résoudre un problème, par exemple la recherche d’une solution d’un système d'équations ou d’un problème d’optimisation. En débutant par le choix d’un point initial considéré comme une première ébauche de solution, la méthode procède par itérations au cours desquelles elle détermine une succession de solutions approximatives raffinées qui se rapprochent graduellement de la solution cherchée. Les points générés sont appelés des itérés.
Catastrophic interferenceCatastrophic interference, also known as catastrophic forgetting, is the tendency of an artificial neural network to abruptly and drastically forget previously learned information upon learning new information. Neural networks are an important part of the network approach and connectionist approach to cognitive science. With these networks, human capabilities such as memory and learning can be modeled using computer simulations. Catastrophic interference is an important issue to consider when creating connectionist models of memory.
Recherche automatique d'architecture neuronaleLa recherche automatique d'architecture neuronale (Neural Architecture Search, NAS) est un ensemble de techniques visant à découvrir automatiquement de nouveaux modèles de réseaux de neurones artificiels. Les principales méthodes employées dans la littérature sont basées soit sur de l'apprentissage par renforcement, sur de la descente de gradient ou bien sur des algorithmes génétiques. Plusieurs méthodes NAS parviennent à obtenir des architectures qui atteignent ou surpassent les performances des modèles créés à la main.
Reconnaissance de formesthumb|Reconnaissance de forme à partir de modélisation en 3D La reconnaissance de formes (ou parfois reconnaissance de motifs) est un ensemble de techniques et méthodes visant à identifier des régularités informatiques à partir de données brutes afin de prendre une décision dépendant de la catégorie attribuée à ce motif. On considère que c'est une branche de l'intelligence artificielle qui fait largement appel aux techniques d'apprentissage automatique et aux statistiques.
Dessinvignette|redresse|Léonard de Vinci, Homme de Vitruve (vers 1492). Le 'dessin' est une technique de représentation visuelle sur un support plat. Le terme « dessin » désigne à la fois l'action de dessiner, l'ouvrage graphique qui en résulte, et la forme d'un objet quelconque. Le « dessin linéaire » représente les objets par leurs contours, leurs arêtes et quelques lignes caractéristiques ; au-delà de cette limite, le dessin se développe en représentant le volume par les ombres, souvent au moyen des hachures, incorpore des couleurs, et rejoint, sans transition nette, la peinture.
Text-to-image modelA text-to-image model is a machine learning model which takes an input natural language description and produces an image matching that description. Such models began to be developed in the mid-2010s, as a result of advances in deep neural networks. In 2022, the output of state of the art text-to-image models, such as OpenAI's DALL-E 2, Google Brain's , StabilityAI's Stable Diffusion, and Midjourney began to approach the quality of real photographs and human-drawn art.
Grand modèle de langageUn grand modèle de langage, grand modèle linguistique, grand modèle de langue, modèle massif de langage ou encore modèle de langage de grande taille (LLM, pour l'anglais large language model) est un modèle de langage possédant un grand nombre de paramètres (généralement de l'ordre du milliard de poids ou plus). Ce sont des réseaux de neurones profonds entraînés sur de grandes quantités de texte non étiqueté utilisant l'apprentissage auto-supervisé ou l'apprentissage semi-supervisé.
Procédure inquisitoireLa procédure inquisitoire est la procédure judiciaire où la maîtrise du procès est confiée au juge qui joue un rôle actif. En plus des éléments que les parties vont lui apporter, le juge pourra rechercher des éléments de preuve lui-même afin de fonder sa propre opinion. La procédure inquisitoire s'oppose donc à la procédure accusatoire, en usage au civil et, dans les pays anglo-saxons, au pénal, où le rôle des juges se limite seulement à celui d’arbitre impartial entre les parties.
Filtre de CannyLe filtre de Canny (ou détecteur de Canny) est utilisé en pour la détection des contours. L'algorithme a été conçu par John Canny en 1986 pour être optimal suivant trois critères clairement explicités : bonne détection : faible taux d'erreur dans la signalisation des contours, bonne localisation : minimisation des distances entre les contours détectés et les contours réels, clarté de la réponse : une seule réponse par contour et pas de faux positifs vignette|Image obtenue après application d'un flou gaussien 5x5.