Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
This paper proposes a computational approach to form-find pin-jointed bar structures subjected to combinations of tension and compression forces. The generated equilibrium states can meet structural and geometrical constraints via gradient-based optimization. We achieve this by extending the combinatorial equilibrium modeling (CEM) framework in three important ways. First, we introduce a new topological object, the auxiliary trail, to expand the range of structures that can be form-found with the framework. Then, we leverage automatic differentiation (AD) to obtain an exact value of the gradient of the sequential and iterative calculations of the CEM form-finding algorithm, instead of a numerical approximation. Finally, we encapsulate our research developments in an open-source design tool written in Python that is usable across different CAD platforms and operating systems. After studying four different structures - a self-stressed tensegrity, a tree canopy, a curved bridge, and a spiral staircase - we demonstrate that our approach enables the solution of constrained form-finding problems on a diverse range of structures more efficiently than in previous work. (c) 2022 Elsevier Ltd. All rights reserved.