Problème du sac à dosEn algorithmique, le problème du sac à dos, parfois noté (KP) (de l'anglais Knapsack Problem) est un problème d'optimisation combinatoire. Ce problème classique en informatique et en mathématiques modélise une situation analogue au remplissage d'un sac à dos. Il consiste à trouver la combinaison d'éléments la plus précieuse à inclure dans un sac à dos, étant donné un ensemble d'éléments décrits par leurs poids et valeurs.
Problème du voyageur de commercevignette|Le problème de voyageur de commerce : calculer un plus court circuit qui passe une et une seule fois par toutes les villes (ici 15 villes). En informatique, le problème du voyageur de commerce, ou problème du commis voyageur, est un problème d'optimisation qui consiste à déterminer, étant donné un ensemble de villes, le plus court circuit passant par chaque ville une seule fois. C'est un problème algorithmique célèbre, qui a donné lieu à de nombreuses recherches et qui est souvent utilisé comme introduction à l'algorithmique ou à la théorie de la complexité.
Problème NP-completEn théorie de la complexité, un problème NP-complet ou problème NPC (c'est-à-dire un problème complet pour la classe NP) est un problème de décision vérifiant les propriétés suivantes : il est possible de vérifier une solution efficacement (en temps polynomial) ; la classe des problèmes vérifiant cette propriété est notée NP ; tous les problèmes de la classe NP se ramènent à celui-ci via une réduction polynomiale ; cela signifie que le problème est au moins aussi difficile que tous les autres problèmes de l
Complet (complexité)En informatique théorique, et notamment en théorie de la complexité, un problème complet pour une classe de complexité est un problème de décision qui fait partie des problèmes les plus difficiles à résoudre de cette classe. En ce sens, il est un représentant de la classe. C'est une notion centrale en complexité. Elle permet notamment d'établir des inclusions entre les classes en ne considérant qu'un seul problème. Un problème p est dit difficile pour une classe C pour un certain type de réduction s'il existe une réduction de ce type, depuis n'importe quel problème de la classe vers p.
P-completEn théorie de la complexité computationnelle, un problème de décision est P-complet (c.-à-d. complet pour la classe de complexité P des problèmes en temps polynomial) s'il est dans P et tout problème dans P peut y être réduit par une réduction en espace logarithmique (d'autres réductions sont aussi utilisées, comme NC). La notion de problème de décision P-complet est utile pour déterminer : quels problèmes sont difficiles à paralléliser efficacement (si on utilise des réductions NC), quels problèmes sont difficiles à résoudre dans un espace limité (si on utilise des réductions en espace logarithmique).
Problème de rechercheEn informatique théorique, et plus particulièrement en théorie de la complexité et en théorie de la calculabilité, un problème de recherche est un problème algorithmique associé à une relation binaire. Si R est une relation binaire telle que pour tout (R) ⊆ Γ+ et T une machine de Turing, alors T implante R si: Si x est tel qu'il existe un y vérifiant R(x, y) alors T accepte l'entrée x en produisant un résultat z tel que R(x, z) (s'il y a plusieurs y, T n'est astreint à n'en trouver qu'un seul) Si x est tel qu'il n'existe aucune y tel que R(x, y) alors T rejette l'entrée x De manière intuitive, un problème de recherche consiste à trouver, s'il existe, un objet "y" associé à un objet "x".
Problème de l'isomorphisme de graphesvignette|Le problème est de savoir si deux graphes sont les mêmes. En informatique théorique, le problème de l'isomorphisme de graphes est le problème de décision qui consiste, étant donné deux graphes non orientés, à décider s'ils sont isomorphes ou pas, c'est-à-dire s'ils sont les mêmes, quitte à renommer les sommets. Ce problème est particulièrement important en théorie de la complexité, plus particulièrement pour le problème P=NP.
Algorithme de rechercheEn informatique, un algorithme de recherche est un type d'algorithme qui, pour un domaine, un problème de ce domaine et des critères donnés, retourne en résultat un ensemble de solutions répondant au problème. Supposons que l'ensemble de ses entrées soit divisible en sous-ensemble, par rapport à un critère donné, qui peut être, par exemple, une relation d'ordre. De façon générale, un tel algorithme vérifie un certain nombre de ces entrées et retourne en sortie une ou plusieurs des entrées visées.
Problème de décisionEn informatique théorique, un problème de décision est une question mathématique dont la réponse est soit « oui », soit « non ». Les logiciens s'y sont intéressés à cause de l'existence ou de la non-existence d'un algorithme répondant à la question posée. Les problèmes de décision interviennent dans deux domaines de la logique : la théorie de la calculabilité et la théorie de la complexité. Parmi les problèmes de décision citons par exemple le problème de l'arrêt, le problème de correspondance de Post ou le dernier théorème de Fermat.
Puits à eauUn puits à eau est le résultat d'un terrassement vertical, mécanisé (par forage, havage, etc.) ou manuel, permettant l'exploitation d'une nappe d'eau souterraine, autrement dit un aquifère. L'eau peut être remontée au niveau du sol grâce à un seau ou une pompe, manuelle ou non. Les puits sont très divers, que ce soit par leur mode de creusement, leur profondeur, leur volume d'eau, ou leur équipement. Les premiers puits étaient probablement de simples trous mal protégés des éboulements et qui n'ont pas résisté au temps et ont disparu.