Matériel librevignette|Zynthian, un projet de synthétiseur musical libre Le matériel libre, matériel ouvert ou matériel open source désigne, par analogie avec le logiciel libre et le logiciel open source, les technologies des matériels et produits physiques développés selon les principes des ressources libres de droits ou sous licence libre. . Chris Anderson, rédacteur en chef de Wired et auteur de la longue traîne, affirme que et évoque la voiture libre Rally Fighter, une des premières voitures de course open source (ses spécifications sont « libres »), développée de façon communautaire, par production participative.
Fonction objectifvignette|comparaison de certains substituts de la fonction de perte Le terme fonction objectif ou fonction économique, est utilisé en optimisation mathématique et en recherche opérationnelle pour désigner une fonction qui sert de critère pour déterminer la meilleure solution à un problème d'optimisation. Elle associe une valeur à une instance d'un problème d'optimisation. Le but du problème d'optimisation est alors de minimiser ou de maximiser cette fonction jusqu'à l'optimum, par différents procédés comme l'algorithme du simplexe.
Learning to rankLearning to rank or machine-learned ranking (MLR) is the application of machine learning, typically supervised, semi-supervised or reinforcement learning, in the construction of ranking models for information retrieval systems. Training data consists of lists of items with some partial order specified between items in each list. This order is typically induced by giving a numerical or ordinal score or a binary judgment (e.g. "relevant" or "not relevant") for each item.
Biais (distorsion)Dans diverses disciplines, un biais est une erreur systématique ou une simplification abusive. vignette|L'interprétation des formes aléatoires apparaissant à la surface de la Lune constitue un exemple courant de biais perceptuel causé par la paréidolie (processus tendant à discerner une forme familière parmi des formes aléatoires). Les biais peuvent être transmis implicitement avec le contexte culturel.
Open-source software developmentOpen-source software development (OSSD) is the process by which open-source software, or similar software whose source code is publicly available, is developed by an open-source software project. These are software products available with its source code under an open-source license to study, change, and improve its design. Examples of some popular open-source software products are Mozilla Firefox, Google Chromium, Android, LibreOffice and the VLC media player. In 1997, Eric S. Raymond wrote The Cathedral and the Bazaar.
Ingénierie des caractéristiquesL'ingénierie des caractéristiques (en anglais feature engineering) a un rôle important, notamment dans l’analyse des données. Sans données, les algorithmes d’exploitation et d’apprentissage automatique de données ne seront pas en mesure de fonctionner. En effet, il s’avère qu’en réalité, on ne pourrait réaliser que peu de choses si nous ne disposions que de très peu de caractéristiques afin de pouvoir représenter les données, ou les banques de données, sous-jacentes.
Auto-encodeur variationnelEn apprentissage automatique, un auto-encodeur variationnel (ou VAE de l'anglais variational auto encoder), est une architecture de réseau de neurones artificiels introduite en 2013 par D. Kingma et M. Welling, appartenant aux familles des modèles graphiques probabilistes et des méthodes bayésiennes variationnelles. Les VAE sont souvent rapprochés des autoencodeurs en raison de leur architectures similaires. Leur utilisation et leur formulation mathématiques sont cependant différentes.
Loss functions for classificationIn machine learning and mathematical optimization, loss functions for classification are computationally feasible loss functions representing the price paid for inaccuracy of predictions in classification problems (problems of identifying which category a particular observation belongs to). Given as the space of all possible inputs (usually ), and as the set of labels (possible outputs), a typical goal of classification algorithms is to find a function which best predicts a label for a given input .
Apprentissage par renforcement profondL'apprentissage par renforcement profond (en anglais : deep reinforcement learning ou deep RL) est un sous-domaine de l'apprentissage automatique (en anglais : machine learning) qui combine l'apprentissage par renforcement et l'apprentissage profond (en anglais : deep learning). L'apprentissage par renforcement considère le problème d'un agent informatique (par exemple, un robot, un agent conversationnel, un personnage dans un jeu vidéo, etc.) qui apprend à prendre des décisions par essais et erreurs.
Aversion pour la pertevignette|Graphique de la valeur perçue du gain et de la perte par rapport à la valeur numérique stricte du gain et de la perte : Une perte de 0,05 estperc\cuecommeuneperted′utiliteˊbeaucoupplusimportantequel′augmentationd′utiliteˊd′ungainde0,05. L'aversion pour la perte est une notion issue de l'économie comportementale, elle est un biais comportemental qui fait que les humains attachent plus d'importance à une perte qu'à un gain du même montant.