Gradient-Based Learning of Discrete Structured Measurement Operators for Signal Recovery
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Linear-Quadratic-Gaussian (LQG) control is a fundamental control paradigm that is studied in various fields such as engineering, computer science, economics, and neuroscience. It involves controlling a system with linear dynamics and imperfect observations ...
The Joint Photographic Experts Group (JPEG) AI learning-based image coding system is an ongoing joint standardization effort between International Organization for Standardization (ISO), International Electrotechnical Commission (IEC), and International Te ...
Graph machine learning offers a powerful framework with natural applications in scientific fields such as chemistry, biology and material sciences. By representing data as a graph, we encode the prior knowledge that the data is composed of a set of entitie ...
In this paper, we consider electric vehicle charging facilities that offer various levels of service, i.e., charging rates, for varying prices such that rational users choose a level of service that minimizes the total cost to themselves including an oppor ...
Neural machine translation (MT) and text generation have recently reached very high levels of quality. However, both areas share a problem: in order to reach these levels, they require massive amounts of data. When this is not present, they lack generaliza ...
While adversarial training and its variants have shown to be the most effective algorithms to defend against adversarial attacks, their extremely slow training process makes it hard to scale to large datasets like ImageNet. The key idea of recent works to ...
The goal of this paper is to characterize function distributions that general neural networks trained by descent algorithms (GD/SGD), can or cannot learn in polytime. The results are: (1) The paradigm of general neural networks trained by SGD is poly-time ...
In this article, we study the problem of Byzantine fault-tolerance in a federated optimization setting, where there is a group of agents communicating with a centralized coordinator. We allow up to f Byzantine-faulty agents, which may not follow a prescr ...
In this internship, I explore different optimization algorithms for lensless imaging. Lensless imaging is a new imaging technique that replaces the lens of a camera with a diffuser mask. This allows for simpler and cheaper camera hardware. However, the rec ...
Control design for robotic systems is complex and often requires solving an optimization to follow a trajectory accurately. Online optimization approaches like Model Predictive Control (MPC) have been shown to achieve great tracking performance, but requir ...