Publication

Polynomial-time universality and limitations of deep learning

Emmanuel Abbé
2023
Article
Résumé

The goal of this paper is to characterize function distributions that general neural networks trained by descent algorithms (GD/SGD), can or cannot learn in polytime. The results are: (1) The paradigm of general neural networks trained by SGD is poly-time universal: any function distribution that can be learned from samples in polytime can also be learned by a poly-size neural net trained by SGD with polynomial parameters. In particular, this can be achieved despite polynomial noise on the gradients, implying a separation result between SGD-based deep learning and statistical query algorithms, as the latter are not comparably universal due to cases like parities. This also shows that deep learning does not suffer from the limitations of shallow networks. (2) The paper further gives a lower-bound on the generalization error of descent algorithms, which relies on two quantities: the cross-predictability, an average-case quantity related to the statistical dimension, and the null-flow, a quantity specific to descent algorithms. The lower-bound implies in particular that for functions of low enough cross-predictability, the above robust universality breaks down once the gradients are averaged over too many samples (as in perfect GD) rather than fewer (as in SGD). (3) Finally, it is shown that if larger amounts of noise are added on the initialization and on the gradients, then SGD is no longer comparably universal due again to distributions having low enough cross-predictability.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.