Génération automatique de textesLa génération automatique de texte (GAT) est une sous discipline de la linguistique computationnelle qui vise à exprimer sous une forme textuelle, syntaxiquement et sémantiquement correcte, une représentation formelle d'un contenu. Outre ses nombreuses applications existantes ou potentielles - par exemple pour produire automatiquement des bulletins météorologiques, ou des rapports automatisés - elle offre par ailleurs un cadre d'investigation des théories linguistiques, et particulièrement de ses mécanismes de production.
Cortex visuelLe occupe le lobe occipital du cerveau et est chargé de traiter les informations visuelles. Le cortex visuel couvre le lobe occipital, sur les faces latérales et internes, et empiète sur le lobe pariétal et le lobe temporal. L'étude du cortex visuel en neurosciences a permis de le découper en une multitude de sous-régions fonctionnelles (V1, V2, V3, V4, MT) qui traitent chacune ou collectivement des multiples propriétés des informations provenant des voies visuelles (formes, couleurs, mouvements).
Apprentissage profondL'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.
Compréhension du langage naturelvignette|L'apprentissage de la lecture par Sigurður málari, siècle. La compréhension du langage naturel (NLU en anglais) ou linterprétation en langage naturel (NLI) est une sous-rubrique du traitement de la langue naturelle en intelligence artificielle qui traite de la compréhension en lecture automatique. La compréhension du langage naturel est considérée comme un problème difficile en IA. Il existe un intérêt commercial considérable dans ce domaine en raison de son application à la collecte de nouvelles, à la catégorisation des textes, à l'activation vocale, à l'archivage et à l'analyse de contenu à grande échelle.
Natural-language user interfaceNatural-language user interface (LUI or NLUI) is a type of computer human interface where linguistic phenomena such as verbs, phrases and clauses act as UI controls for creating, selecting and modifying data in software applications. In interface design, natural-language interfaces are sought after for their speed and ease of use, but most suffer the challenges to understanding wide varieties of ambiguous input. Natural-language interfaces are an active area of study in the field of natural-language processing and computational linguistics.
Grand modèle de langageUn grand modèle de langage, grand modèle linguistique, grand modèle de langue, modèle massif de langage ou encore modèle de langage de grande taille (LLM, pour l'anglais large language model) est un modèle de langage possédant un grand nombre de paramètres (généralement de l'ordre du milliard de poids ou plus). Ce sont des réseaux de neurones profonds entraînés sur de grandes quantités de texte non étiqueté utilisant l'apprentissage auto-supervisé ou l'apprentissage semi-supervisé.
Deep belief networkIn machine learning, a deep belief network (DBN) is a generative graphical model, or alternatively a class of deep neural network, composed of multiple layers of latent variables ("hidden units"), with connections between the layers but not between units within each layer. When trained on a set of examples without supervision, a DBN can learn to probabilistically reconstruct its inputs. The layers then act as feature detectors. After this learning step, a DBN can be further trained with supervision to perform classification.
Object recognition (cognitive science)Visual object recognition refers to the ability to identify the objects in view based on visual input. One important signature of visual object recognition is "object invariance", or the ability to identify objects across changes in the detailed context in which objects are viewed, including changes in illumination, object pose, and background context. Neuropsychological evidence affirms that there are four specific stages identified in the process of object recognition.
Vision du tunnelLa vision du tunnel (ou vision tunnelisée) est la perte de vision périphérique avec rétention de la vision centrale, résultant en une vision circonscrite et circulaire du champ de vision. L'expression est également utilisée pour désigner de façon métaphorique l'étroitesse ou la fermeture d'esprit d'un individu, ou son comportement anomique. La vision du tunnel peut être causée par : perte de sang (hypovolémie) ; consommation d'alcool (peut causer une vision du tunnel).
Vision par ordinateurLa vision par ordinateur est un domaine scientifique et une branche de l’intelligence artificielle qui traite de la façon dont les ordinateurs peuvent acquérir une compréhension de haut niveau à partir d's ou de vidéos numériques. Du point de vue de l'ingénierie, il cherche à comprendre et à automatiser les tâches que le système visuel humain peut effectuer. Les tâches de vision par ordinateur comprennent des procédés pour acquérir, traiter, et « comprendre » des images numériques, et extraire des données afin de produire des informations numériques ou symboliques, par ex.