The remarkable ability of deep learning (DL) models to approximate high-dimensional functions from samples has sparked a revolution across numerous scientific and industrial domains that cannot be overemphasized. In sensitive applications, the good perform ...
Recently, cutting-edge brain-machine interfaces (BMIs) have revealed the potential of decoders such as recurrent neural networks (RNNs) in predicting attempted handwriting [1] or speech [2], enabling rapid communication recovery after paralysis. However, c ...
The rise of robotic body augmentation brings forth new developments that will transform robotics, human-machine interaction, and wearable electronics. Extra robotic limbs, although building upon restorative technologies, bring their own set of challenges i ...
In the rapidly evolving landscape of machine learning research, neural networks stand out with their ever-expanding number of parameters and reliance on increasingly large datasets. The financial cost and computational resources required for the training p ...
In this thesis, we study two closely related directions: robustness and generalization in modern deep learning. Deep learning models based on empirical risk minimization are known to be often non-robust to small, worst-case perturbations known as adversari ...
Machine learning (ML) enables artificial intelligent (AI) agents to learn autonomously from data obtained from their environment to perform tasks. Modern ML systems have proven to be extremely effective, reaching or even exceeding human intelligence.
Altho ...
Informative sample selection in an active learning (AL) setting helps a machine learning system attain optimum performance with minimum labeled samples, thus reducing annotation costs and boosting performance of computer-aided diagnosis systems in the pres ...
Electrical stimulation of the nervous system has emerged as a promising assistive technology in case of many injuries and illnesses across various parts of the nervous system. In particular, the invasive neuromodulation of the peripheral nervous system see ...
This thesis presents an extensive exploration of neuroelectronic interfaces, focusing on microfabrication, in silico modeling, and their applications in designing and fabricating devices for neural interfacing. The research encompasses both peripheral nerv ...
Neuroprostheses have been used clinically for decades, to help restore or preserve brain functions, when pharmaceutical treatments are inefficient. Although great progress in the field has been made over the years to interface with the nervous system, surf ...