Publication

Tackling Peer-to-Peer Discrimination in the Sharing Economy

Boi Faltings, Naman Goel, Maxime Rutagarama
2020
Article de conférence
Résumé

Sharing economy platforms such as Airbnb and Uber face a major challenge in the form of peer-to-peer discrimination based on sensitive personal attributes such as race and gender. As shown by a recent study under controlled settings, reputation systems can eliminate social biases on these platforms by building trust between the users. However, for this to work in practice, the reputation systems must themselves be non-discriminatory. In fact, a biased reputation system will further reinforce the bias and create a vicious feedback loop. Given that the reputation scores are generally aggregates of ratings provided by human users to one another, it is not surprising that the scores often inherit the human bias. In this paper, we address the problem of making reputation systems on sharing economy platforms more fair and unbiased. We show that a game-theoretical incentive mechanism can be used to encourage users to go against common bias and provide a truthful rating about others, obtained through a more careful and deeper evaluation. In situations where an incentive mechanism can’t be implemented, we show that a simple post-processing approach can also be used to correct bias in the reputation scores, while minimizing the loss in the useful information provided by the scores. We evaluate the proposed solution on synthetic and real datasets from Airbnb.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (32)
Système de réputation
Les systèmes de réputation sont des programmes qui permettent à l'utilisateur d'évaluer d'autres utilisateurs dans les communautés en ligne. Ce réseau d'utilisateurs permet d'apporter de la confiance en un organisme commercial ou un utilisateur au fur et à mesure qu'il gagne en réputation. Ce système est utilisé plus couramment sur des sites de commerce électronique tels qu'Ebay, Amazon.com et Etsy, souvent accompagné d'un système de conseils en ligne, de communautés comme Stack Exchange Network et d'un comité d'arbitrage.
Biais (distorsion)
Dans diverses disciplines, un biais est une erreur systématique ou une simplification abusive. vignette|L'interprétation des formes aléatoires apparaissant à la surface de la Lune constitue un exemple courant de biais perceptuel causé par la paréidolie (processus tendant à discerner une forme familière parmi des formes aléatoires). Les biais peuvent être transmis implicitement avec le contexte culturel.
Biais médiatique
Un biais médiatique est une tendance des médias à présenter involontairement les informations, idées ou évènements d'une façon altérée par un apriori ou une conviction. Le phénomène de biais médiatique est connu des attachés de presse, des états-majors du monde politique, et bien entendu des médias eux-mêmes. Il s'ensuit une course au positionnement. Une étude de 2014 analyse l’envergure et les différentes formes de biais médiatiques.
Afficher plus
Publications associées (40)

It’s All Relative: Learning Interpretable Models for Scoring Subjective Bias in Documents from Pairwise Comparisons

Matthias Grossglauser, Aswin Suresh, Chi Hsuan Wu

We propose an interpretable model to score the subjective bias present in documents, based only on their textual content. Our model is trained on pairs of revisions of the same Wikipedia article, where one version is more biased than the other. Although pr ...
2024

Exploiting the Signal-Leak Bias in Diffusion Models

Sabine Süsstrunk, Radhakrishna Achanta, Mahmut Sami Arpa, Martin Nicolas Everaert, Athanasios Fitsios

There is a bias in the inference pipeline of most diffusion models. This bias arises from a signal leak whose distribution deviates from the noise distribution, creating a discrepancy between training and inference processes. We demonstrate that this signa ...
2024

Timing and spatial selection bias in rapid extreme event attribution

Anthony Christopher Davison, Ophélia Mireille Anna Miralles

Selection bias may arise when data have been chosen in a way that subsequent analysis does not account for. Such bias can arise in climate event attribution studies that are performed rapidly after a devastating "trigger event'', whose occurrence correspon ...
ELSEVIER2023
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.