Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Millimeter wave (mmWave) radars are becoming a more popular sensing modality in self-driving cars due to their favorable characteristics in adverse weather. Yet, they currently lack sufficient spatial resolution for semantic scene understanding. In this paper, we present Radatron, a system capable of accurate object detection using mmWave radar as a stand-alone sensor. To enable Radatron, we introduce a first-of-itskind, high-resolution automotive radar dataset collected with a cascaded MIMO (Multiple Input Multiple Output) radar. Our radar achieves 5 cm range resolution and 1.2. angular resolution, 10x finer than other publicly available datasets. We also develop a novel hybrid radar processing and deep learning approach to achieve high vehicle detection accuracy. We train and extensively evaluate Radatron to show it achieves 92.6% AP50 and 56.3% AP75 accuracy in 2D bounding box detection, an 8% and 15.9% improvement over prior art respectively. Code and dataset is available on https://jguan.page/Radatron/.
Francesco Mondada, Alexandre Massoud Alahi, Vaios Papaspyros
Mathieu Salzmann, Yinlin Hu, Jingyu Li, Rui Song