Chemical thermodynamicsChemical thermodynamics is the study of the interrelation of heat and work with chemical reactions or with physical changes of state within the confines of the laws of thermodynamics. Chemical thermodynamics involves not only laboratory measurements of various thermodynamic properties, but also the application of mathematical methods to the study of chemical questions and the spontaneity of processes. The structure of chemical thermodynamics is based on the first two laws of thermodynamics.
Pérovskite (structure)La pérovskite, du nom du minéralogiste russe L. A. Perovski, est une structure cristalline commune à de nombreux oxydes. Ce nom a d'abord désigné le titanate de calcium de formule CaTiO, avant d'être étendu à l'ensemble des oxydes de formule générale ABO présentant la même structure. Les pérovskites présentent un grand intérêt en raison de la très grande variété de propriétés que présentent ces matériaux selon le choix des éléments A et B : ferroélasticité (par exemple ), ferroélectricité (par exemple ), antiferroélectricité (par exemple PbZrO), ferromagnétisme (par exemple YTiO), antiferromagnétisme (LaTiO) La structure pérovskite de plus haute symétrie est une structure de symétrie cubique.
PérovskiteLa pérovskite désigne originellement un minéral du titanate de calcium de formule . On appelle plus généralement pérovskites les minéraux de même structure, dont un polymorphe de considéré comme le minéral le plus abondant du manteau terrestre. Dans la croûte, les pérovskites sont des minéraux accessoires communément trouvés dans les carbonatites et l'un des hôtes majeurs pour les terres rares et le niobium. Cette espèce minérale a été décrite en 1839 par le minéralogiste allemand Gustav Rose, à partir d'échantillons provenant de l'Oural.
Silicate perovskiteSilicate perovskite is either (the magnesium end-member is called bridgmanite) or (calcium silicate known as davemaoite) when arranged in a perovskite structure. Silicate perovskites are not stable at Earth's surface, and mainly exist in the lower part of Earth's mantle, between about depth. They are thought to form the main mineral phases, together with ferropericlase. The existence of silicate perovskite in the mantle was first suggested in 1962, and both and had been synthesized experimentally before 1975.
Capacité thermiqueLa capacité thermique (anciennement capacité calorifique) d'un corps est une grandeur qui mesure la chaleur qu'il faut lui transférer pour augmenter sa température d'un kelvin. Inversement, elle permet de quantifier la possibilité qu'a ce corps d'absorber ou de restituer de la chaleur au cours d'une transformation pendant laquelle sa température varie. Elle s'exprime en joules par kelvin (). C'est une grandeur extensive : plus la quantité de matière est importante, plus la capacité thermique est grande.
Température thermodynamiqueLa température thermodynamique est une formalisation de la notion expérimentale de température et constitue l’une des grandeurs principales de la thermodynamique. Elle est intrinsèquement liée à l'entropie. Usuellement notée , la température thermodynamique se mesure en kelvins (symbole K). Encore souvent qualifiée de « température absolue », elle constitue une mesure absolue parce qu’elle traduit directement le phénomène physique fondamental qui la sous-tend : l’agitation des constituant la matière (translation, vibration, rotation, niveaux d'énergie électronique).
Capacité thermique massiqueLa capacité thermique massique (symbole usuel c), anciennement appelée chaleur massique ou chaleur spécifique, est la capacité thermique d'un matériau rapportée à sa masse. C'est une grandeur qui reflète la capacité d'un matériau à accumuler de l'énergie sous forme thermique, pour une masse donnée, quand sa température augmente. Une grande capacité thermique signifie qu'une grande quantité d'énergie peut être stockée, moyennant une augmentation relativement faible de la température.
Principes de la thermodynamiquevignette|Entropie d'un corps à 0 K (à gauche) Corps avec une température supérieur à 0 K (à droite) Les principes de la thermodynamique sont les principales lois (principes en fait, car non démontrés) qui régissent la thermodynamique : premier principe de la thermodynamique : principe de conservation de l'énergie ; introduction de la fonction énergie interne, U ; deuxième principe de la thermodynamique : principe d'évolution ; création d'entropie, S ; troisième principe de la thermodynamique ou principe de N
ThermodynamiqueLa thermodynamique est la branche de la physique qui traite de la dépendance des propriétés physiques des corps à la température, des phénomènes où interviennent des échanges thermiques, et des transformations de l'énergie entre différentes formes. La thermodynamique peut être abordée selon deux approches différentes et complémentaires : phénoménologique et statistique. La thermodynamique phénoménologique ou classique a été l'objet de nombreuses avancées dès le .
Manteau terrestrethumb|300px|Structure de la Terre. 1. croûte continentale, 2. croûte océanique, 3. Manteau supérieur, 4. Manteau inférieur, 5. noyau externe, 6. noyau interne, A : Discontinuité de Mohorovicic, B : Discontinuité de Gutenberg, C : Le manteau terrestre est la couche intermédiaire entre le noyau terrestre et la croûte terrestre. Il représente 82 % du volume de la Terre et environ 65 % de sa masse. Il est séparé de la croûte par la discontinuité de Mohorovičić (terme fréquemment abrégé en Moho), et du noyau par la discontinuité de Gutenberg.