SolitonUn soliton est une onde solitaire qui se propage sans se déformer dans un milieu non linéaire et dispersif. On en trouve dans de nombreux phénomènes physiques de même qu'ils sont la solution de nombreuses équations aux dérivées partielles non linéaires. thumb|Soliton hydrodynamique. Le phénomène associé a été observé pour la première fois en 1834 par l'Écossais John Scott Russell qui l'a observé initialement en se promenant le long d'un canal : il a suivi pendant plusieurs kilomètres une vague remontant le courant qui ne semblait pas vouloir faiblir.
Espace de FréchetUn espace de Fréchet est une structure mathématique d'espace vectoriel topologique satisfaisant certains théorèmes relatifs aux espaces de Banach même en l'absence d'une norme. Cette dénomination fait référence à Maurice Fréchet, mathématicien français ayant participé notamment à la fondation de la topologie et à ses applications en analyse fonctionnelle. C'est dans ce dernier domaine que la structure des espaces de Fréchet se révèle particulièrement utile, notamment en fournissant une topologie naturelle aux espaces de fonctions infiniment dérivables et aux espaces de distributions.
Filters in topologyFilters in topology, a subfield of mathematics, can be used to study topological spaces and define all basic topological notions such as convergence, continuity, compactness, and more. Filters, which are special families of subsets of some given set, also provide a common framework for defining various types of limits of functions such as limits from the left/right, to infinity, to a point or a set, and many others. Special types of filters called have many useful technical properties and they may often be used in place of arbitrary filters.
Topologie grossièreEn mathématiques et plus précisément en topologie, la topologie grossière (ou topologie triviale) associée à un ensemble X est la topologie sur X dont les seuls ouverts sont l'ensemble vide et X. Cette topologie est la moins fine de toutes les topologies qu'il est possible de définir sur un ensemble ; intuitivement, tous les points de l'espace topologique ainsi créé sont « groupés ensemble » et ne peuvent pas être distingués du point de vue topologique.
Topologie géométriqueEn mathématiques, la topologie géométrique est l'étude des variétés et des applications entre elles, en particulier les plongements d'une variété dans une autre. Quelques exemples de sujets en topologie géométrique sont l'orientablité, la décomposition en anses, la platitude locale et le théorème de Jordan-Schoenflies dans le plan et en dimensions supérieures.