Résumé
Un espace de Fréchet est une structure mathématique d'espace vectoriel topologique satisfaisant certains théorèmes relatifs aux espaces de Banach même en l'absence d'une norme. Cette dénomination fait référence à Maurice Fréchet, mathématicien français ayant participé notamment à la fondation de la topologie et à ses applications en analyse fonctionnelle. C'est dans ce dernier domaine que la structure des espaces de Fréchet se révèle particulièrement utile, notamment en fournissant une topologie naturelle aux espaces de fonctions infiniment dérivables et aux espaces de distributions. Espace localement convexe Pour un espace de Fréchet non nul, il existe plusieurs distances invariantes par translation induisant la topologie, et elles sont toutes complètes puisqu'elles induisent la même structure uniforme. En analyse fonctionnelle, on utilise directement la définition équivalente suivante : De même, il n'y a pas de choix canonique d'une telle famille de semi-normes. Il n'y a pas non plus de bijection naturelle entre les distances compatibles et invariantes, et ces familles de semi-normes. Tout espace de Banach est un espace de Fréchet mais la réciproque est fausse, c'est-à-dire que certains espaces de Fréchet, comme C([0, 1]) ou C(R), ne sont pas normables. L'espace C([0, 1]) des fonctions infiniment dérivables sur l'intervalle [0, 1] est muni des semi-normes pour tout entier k ≥ 0 :où f (0) = f et pour tout k > 0, f (k) désigne la dérivée k-ième de f. Dans cet espace, une suite (fn) de fonctions converge vers la fonction f ∈ C∞([0, 1]) si et seulement si pour tout k ≥ 0, la suite (fn(k)) converge uniformément vers f (k). L'espace de Fréchet C(X) des fonctions continues sur un espace topologique X σ-compact est muni des semi-normes définies par les normes sup sur une suite de compacts K recouvrant X (pour X = R, on peut prendre K = [–n, n]). La topologie obtenue s'identifie avec la topologie compacte-ouverte. Par exemple pour l'espace C(N) des suites (réelles ou complexes), on peut prendre comme compacts les singletons.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.