Functional estimation of anisotropic covariance and autocovariance operators on the sphere
Publications associées (52)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
We consider the problem of nonparametric estimation of the drift and diffusion coefficients of a Stochastic Differential Equation (SDE), based on n independent replicates {Xi(t) : t is an element of [0 , 1]}13 d B(t), where alpha is an element of {0 , 1} a ...
We consider the problem of estimating the autocorrelation operator of an autoregressive Hilbertian process. By means of a Tikhonov approach, we establish a general result that yields the convergence rate of the estimated autocorrelation operator as a funct ...
This study aims to explore the possibility of estimating a multitude of kinematic and dynamic quantities using subject-specific musculoskeletal models in real-time. The framework was designed to operate with marker-based and inertial measurement units enab ...
Given a sequence L & x2d9;epsilon of Levy noises, we derive necessary and sufficient conditions in terms of their variances sigma 2(epsilon) such that the solution to the stochastic heat equation with noise sigma(epsilon)-1L & x2d9;epsilon converges in law ...
We show that isogeometric Galerkin discretizations of eigenvalue problems related to the Laplace operator subject to any standard type of homogeneous boundary conditions have no outliers in certain optimal spline subspaces. Roughly speaking, these optimal ...
The discretization of robust quadratic optimal control problems under uncertainty using the finite element method and the stochastic collocation method leads to large saddle-point systems, which are fully coupled across the random realizations. Despite its ...
Functional time series is a temporally ordered sequence of not necessarily independent random curves. While the statistical analysis of such data has been traditionally carried out under the assumption of completely observed functional data, it may well ha ...
We consider the problem of estimating the slope function in a functional regression with a scalar response and a functional covariate. This central problem of functional data analysis is well known to be ill-posed, thus requiring a regularised estimation p ...
We consider the problem of positive-semidefinite continuation: extending a partially specified covariance kernel from a subdomain Omega of a rectangular domain I x I to a covariance kernel on the entire domain I x I. For a broad class of domains Omega call ...
In this work we introduce and analyze a novel multilevel Monte Carlo (MLMC) estimator for the accurate approximation of central moments of system outputs affected by uncertainties. Central moments play a central role in many disciplines to characterize a r ...