Nucléide primordialthumb|upright=2|Abondance (en fraction atomique par rapport au silicium) des éléments chimiques dans la croûte terrestre externe en fonction de leur numéro atomiqueZ. Les éléments les plus rares (en jaune) ne sont pas les plus lourds mais les plus sidérophiles (fréquemment associés au fer) dans la classification géochimique. Ils ont été épuisés par migration en profondeur dans le noyau terrestre. Leur abondance dans les météoroïdes est plus élevée. De plus, le tellure et le sélénium ont été épuisés par formation d'hydrures volatils.
Reference materials for stable isotope analysisIsotopic reference materials are compounds (solids, liquids, gasses) with well-defined isotopic compositions and are the ultimate sources of accuracy in mass spectrometric measurements of isotope ratios. Isotopic references are used because mass spectrometers are highly fractionating. As a result, the isotopic ratio that the instrument measures can be very different from that in the sample's measurement. Moreover, the degree of instrument fractionation changes during measurement, often on a timescale shorter than the measurement's duration, and can depend on the characteristics of the sample itself.
Isotope stablevignette|Table des isotopes par mode de désintégration majoritaire (données du programme Nucleus). Un isotope stable d'un élément chimique est un isotope qui n'a pas de radioactivité décelable. Au , 256 nucléides correspondant à 80 éléments étaient considérés comme stables, bien que le calcul pour un nombre significatif d'entre eux suggère qu'ils devraient connaître certains modes de désintégration. Les éléments 43 et 61 — respectivement le technétium et le prométhium — n'ont aucun isotope stable ; le technétium 99 est présent naturellement à l'état de traces.
HydrogèneLhydrogène est l'élément chimique de numéro atomique 1, de symbole H. L'hydrogène présent sur Terre est presque entièrement constitué de l'isotope H (ou protium, comportant un proton et zéro neutron) et d'environ 0,01 % de deutérium H (un proton, un neutron). Ces deux isotopes de l'hydrogène sont stables. Un troisième isotope, le tritium H (un proton, deux neutrons), instable, est produit dans les réactions de fission nucléaire (réacteurs nucléaires ou bombes).
Nucléide cosmogéniqueLes nucléides cosmogéniques (ou isotopes cosmogéniques) sont des isotopes rares créés quand un rayon cosmique de haute énergie interagit avec le noyau d'un atome (réaction de spallation par les rayons cosmiques). Ces isotopes sont en particulier produits dans les matériaux terrestres comme des roches ou le sol, dans l'atmosphère terrestre et dans des corps extraterrestres comme des météorites. La mesure des isotopes cosmogéniques permet aux scientifiques d'avoir une meilleure compréhension de nombreux processus géologiques et astronomiques.
AC powerIn an electric circuit, instantaneous power is the time rate of flow of energy past a given point of the circuit. In alternating current circuits, energy storage elements such as inductors and capacitors may result in periodic reversals of the direction of energy flow. Its SI unit is the watt. The portion of instantaneous power that, averaged over a complete cycle of the AC waveform, results in net transfer of energy in one direction is known as instantaneous active power, and its time average is known as active power or real power.
Field-reversed configurationA field-reversed configuration (FRC) is a type of plasma device studied as a means of producing nuclear fusion. It confines a plasma on closed magnetic field lines without a central penetration. In an FRC, the plasma has the form of a self-stable torus, similar to a smoke ring. FRCs are closely related to another self-stable magnetic confinement fusion device, the spheromak. Both are considered part of the compact toroid class of fusion devices.
Hélium 3L’hélium 3, noté He, est l'isotope de l'hélium dont le nombre de masse est égal à 3 : son noyau atomique compte deux protons et un seul neutron, avec un spin 1/2+ pour une masse atomique de . Cet isotope stable — non radioactif — est caractérisé par un excès de masse de et une énergie de liaison nucléaire par nucléon de . Recherché pour ses applications potentielles en fusion nucléaire, est rare sur Terre, où il constitue environ de l'hélium du manteau ; dans l'atmosphère terrestre, on compte d'hélium, dont représente seulement , soit une fraction d'à peine 7,2 de l'atmosphère dans son ensemble.
Types d'armes nucléairesLes deux grands types d'armes nucléaires se distinguent par leur fonctionnement : Armes à fission ou « bombes A » ; Armes à fusion, bombes thermonucléaires ou « bombes H ». Dans ces deux grandes familles, des armes plus spécialisées ont été conçues en fonction d'effets spéciaux recherchés : la plus connue est la bombe à neutrons. right|thumb|Les premières armes nucléaires, tel Fat Man, étaient très difficiles à transporter et leur mise à feu était complexe.
État plasmathumb|upright|Le soleil est une boule de plasma. thumb|Lampe à plasma.|168x168px thumb|upright|Les flammes de haute température sont des plasmas. L'état plasma est un état de la matière, tout comme l'état solide, l'état liquide ou l'état gazeux, bien qu'il n'y ait pas de transition brusque pour passer d'un de ces états au plasma ou réciproquement. Il est visible sur Terre, à l'état naturel, le plus souvent à des températures élevées favorables aux ionisations, signifiant l’arrachement d'électrons aux atomes.