Digital controlDigital control is a branch of control theory that uses digital computers to act as system controllers. Depending on the requirements, a digital control system can take the form of a microcontroller to an ASIC to a standard desktop computer. Since a digital computer is a discrete system, the Laplace transform is replaced with the Z-transform. Since a digital computer has finite precision (See quantization), extra care is needed to ensure the error in coefficients, analog-to-digital conversion, digital-to-analog conversion, etc.
Modèle de langageEn traitement automatique des langues, un modèle de langage ou modèle linguistique est un modèle statistique de la distribution de symboles distincts (lettres, phonèmes, mots) dans une langue naturelle. Un modèle de langage peut par exemple prédire le mot suivant dans une séquence de mots. Un modèle de langage n-gramme est un modèle de langage qui modélise des séquences de mots comme un processus de Markov. Il utilise l'hypothèse simplificatrice selon laquelle la probabilité du mot suivant dans une séquence ne dépend que d'une fenêtre de taille fixe de mots précédents.
Boucle à phase asservieUne boucle à phase asservie, ou boucle à verrouillage de phase ou BVP (en anglais, phase-locked loop, ou PLL), est un montage électronique permettant d'asservir la phase ou la fréquence de sortie d'un système sur la phase ou la fréquence du signal d'entrée. Elle peut aussi asservir une fréquence de sortie sur un multiple de la fréquence d'entrée. L'invention de la boucle à verrouillage de phase est attribuée à un ingénieur français, Henri de Bellescize, en 1932.
Adversarial machine learningAdversarial machine learning is the study of the attacks on machine learning algorithms, and of the defenses against such attacks. A survey from May 2020 exposes the fact that practitioners report a dire need for better protecting machine learning systems in industrial applications. To understand, note that most machine learning techniques are mostly designed to work on specific problem sets, under the assumption that the training and test data are generated from the same statistical distribution (IID).
Inférence statistiquevignette|Illustration des 4 principales étapes de l'inférence statistique L'inférence statistique est l'ensemble des techniques permettant d'induire les caractéristiques d'un groupe général (la population) à partir de celles d'un groupe particulier (l'échantillon), en fournissant une mesure de la certitude de la prédiction : la probabilité d'erreur. Strictement, l'inférence s'applique à l'ensemble des membres (pris comme un tout) de la population représentée par l'échantillon, et non pas à tel ou tel membre particulier de cette population.
Rule-based machine learningRule-based machine learning (RBML) is a term in computer science intended to encompass any machine learning method that identifies, learns, or evolves 'rules' to store, manipulate or apply. The defining characteristic of a rule-based machine learner is the identification and utilization of a set of relational rules that collectively represent the knowledge captured by the system. This is in contrast to other machine learners that commonly identify a singular model that can be universally applied to any instance in order to make a prediction.
Constrained optimizationIn mathematical optimization, constrained optimization (in some contexts called constraint optimization) is the process of optimizing an objective function with respect to some variables in the presence of constraints on those variables. The objective function is either a cost function or energy function, which is to be minimized, or a reward function or utility function, which is to be maximized.
Dualité (optimisation)En théorie de l'optimisation, la dualité ou principe de dualité désigne le principe selon lequel les problèmes d'optimisation peuvent être vus de deux perspectives, le problème primal ou le problème dual, et la solution du problème dual donne une borne inférieure à la solution du problème (de minimisation) primal. Cependant, en général les valeurs optimales des problèmes primal et dual ne sont pas forcément égales : cette différence est appelée saut de dualité. Pour les problèmes en optimisation convexe, ce saut est nul sous contraintes.
Control loopA control loop is the fundamental building block of control systems in general industrial control systems and industrial control systems in particular. It consists of the process sensor, the controller function, and the final control element (FCE) which controls the process necessary to automatically adjust the value of a measured process variable (PV) to equal the value of a desired set-point (SP). There are two common classes of control loop: open loop and closed loop.
Table de transition d'étatDans la théorie des automates et en logique séquentielle, une table de transition d'état est un tableau montrant dans quel état (ou états dans le cas d'un automate fini non déterministe) d'un automate fini se déplacer, sur la base de l'état actuel et des autres entrées. Une table d'état est essentiellement une table de vérité, dans laquelle certaines des entrées sont l'état actuel, et les sorties comprennent l'état suivant, en même temps que les autres sorties.