Intégrateur symplectiqueUn intégrateur symplectique est une méthode numérique de résolution approchée des équations de la mécanique hamiltonienne, valable pour des faibles variations de temps. Les hypothèses de la mécanique hamiltonienne sont souvent appliquées à la mécanique céleste. Le système à étudier peut s'écrire sous la forme d'une action I et d'un angle φ, de manière que le système différentiel se réduise à : x := (I, φ) et : où l'on a noté : le crochet de Poisson de et . On voudrait connaître la solution formelle au système intégrable .
Numerical methods for ordinary differential equationsNumerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary differential equations (ODEs). Their use is also known as "numerical integration", although this term can also refer to the computation of integrals. Many differential equations cannot be solved exactly. For practical purposes, however – such as in engineering – a numeric approximation to the solution is often sufficient. The algorithms studied here can be used to compute such an approximation.
Mémoire temporelle et hiérarchiqueLa mémoire temporelle et hiérarchique (en anglais Hierarchical temporal memory (HTM)) est un modèle d'apprentissage automatique développé par Jeff Hawkins et Dileep George de la compagnie Numenta. Il modélise certaines propriétés structurelles et algorithmiques du néocortex. C'est un modèle biomimétique fondé sur le paradigme mémoire-prédiction, une théorie du fonctionnement du cerveau élaborée par Jeff Hawkins dans son livre On Intelligence.
Théorie du neuroneLa théorie du neurone désigne la notion devenue fondamentale que les neurones sont les unités structurelles et fonctionnelles de base du système nerveux. Cette théorie fut d'abord formulée par Santiago Ramón y Cajal avant d'être complétée, à la fin du , par Heinrich Wilhelm Waldeyer. C'est ce dernier qui proposa le mot « neurone » pour désigner les cellules nerveuses. Selon cette théorie, les neurones sont des entités fonctionnelles autonomes (et non fusionnées en un maillage) et des unités métaboliques distinctes comportant un corps cellulaire (soma), un axone et des dendrites.
Méthode de RombergEn analyse numérique, la méthode d'intégration de Romberg est une méthode récursive de calcul numérique d'intégrale, fondée sur l'application du procédé d'extrapolation de Richardson à la méthode des trapèzes. Cette technique d'accélération permet d'améliorer l'ordre de convergence de la méthode des trapèzes, en appliquant cette dernière à des divisions dyadiques successives de l'intervalle d'étude et en formant une combinaison judicieuse.
Cerebellar model articulation controllerThe cerebellar model arithmetic computer (CMAC) is a type of neural network based on a model of the mammalian cerebellum. It is also known as the cerebellar model articulation controller. It is a type of associative memory. The CMAC was first proposed as a function modeler for robotic controllers by James Albus in 1975 (hence the name), but has been extensively used in reinforcement learning and also as for automated classification in the machine learning community. The CMAC is an extension of the perceptron model.