Absorption (acoustics)Acoustic absorption refers to the process by which a material, structure, or object takes in sound energy when sound waves are encountered, as opposed to reflecting the energy. Part of the absorbed energy is transformed into heat and part is transmitted through the absorbing body. The energy transformed into heat is said to have been 'lost'. When sound from a loudspeaker collides with the walls of a room part of the sound's energy is reflected, part is transmitted, and part is absorbed into the walls.
History of metamaterialsThe history of metamaterials begins with artificial dielectrics in microwave engineering as it developed just after World War II. Yet, there are seminal explorations of artificial materials for manipulating electromagnetic waves at the end of the 19th century. Hence, the history of metamaterials is essentially a history of developing certain types of manufactured materials, which interact at radio frequency, microwave, and later optical frequencies.
Acoustique industrielleL'acoustique industrielle est le domaine technologique de l'application de vibrations pour transformer des matériaux. Les fréquences de ces vibrations, de forte puissance, sont fréquemment au-delà du domaine audible. Les procédés les plus courants sont le décapage, la découpe et le soudage par ultrasons. Selon une autre définition, l'acoustique industrielle est l'ensemble des techniques servant à modifier la production et la transmission des sons et des bruits propres à l'industrie.
Bruit aérienAircraft noise pollution refers to noise produced by aircraft in flight that has been associated with several negative stress-mediated health effects, from sleep disorders to cardiovascular ones. Governments have enacted extensive controls that apply to aircraft designers, manufacturers, and operators, resulting in improved procedures and cuts in pollution. Sound production is divided into three categories: Mechanical noise—rotation of the engine parts, most noticeable when fan blades reach supersonic speeds.
Faderthumb|Fader vintage Siemens. Un fader (une tirette en français) est un bouton de commande rectiligne réglant le niveau d'un signal électronique. Il se trouve principalement sur les tranches de console de mixage. La position basse (proche de l'opérateur) correspond à une atténuation à l'infini (coupure du signal), la position haute (éloignée de l'opérateur) correspond habituellement à un gain unitaire (, transmet le signal sans changer le niveau). Le indiqué sera alors par rapport au niveau unitaire transmis dans le bus master.
Thin-film bulk acoustic resonatorA thin-film bulk acoustic resonator (FBAR or TFBAR) is a device consisting of a piezoelectric material manufactured by thin film methods between two conductive – typically metallic – electrodes and acoustically isolated from the surrounding medium. The operation is based on the piezoelectricity of the piezolayer between the electrodes. FBAR devices using piezoelectric films with thicknesses ranging from several micrometres down to tenths of micrometres resonate in the frequency range of 100 MHz to 20 GHz.
Sound effectA sound effect (or audio effect) is an artificially created or enhanced sound, or sound process used to emphasize artistic or other content of films, television shows, live performance, animation, video games, music, or other media. In motion picture and television production, a sound effect is a sound recorded and presented to make a specific storytelling or creative point without the use of dialogue or music. Traditionally, in the twentieth century, they were created with Foley.
Porous mediumIn materials science, a porous medium or a porous material is a material containing pores (voids). The skeletal portion of the material is often called the "matrix" or "frame". The pores are typically filled with a fluid (liquid or gas). The skeletal material is usually a solid, but structures like foams are often also usefully analyzed using concept of porous media. A porous medium is most often characterised by its porosity. Other properties of the medium (e.g.
Broadcast engineeringBroadcast engineering is the field of electrical engineering, and now to some extent computer engineering and information technology, which deals with radio and television broadcasting. Audio engineering and RF engineering are also essential parts of broadcast engineering, being their own subsets of electrical engineering. Broadcast engineering involves both the studio and transmitter aspects (the entire airchain), as well as remote broadcasts. Every station has a broadcast engineer, though one may now serve an entire station group in a city.
Gamme dynamiqueLa gamme dynamique, ou plage dynamique ou simplement dynamique est le rapport de la plus grande à la plus petite valeur d'une grandeur. Cette grandeur peut caractériser l'intensité d'un son ou d'une lumière. Elle est mesurée par une valeur logarithmique en base 10 (décibels) ou en base 2 (bits ou « diaphs »). En photographie, le terme décrit le rapport entre l'intensité lumineuse la plus élevée et l'intensité la plus faible qu'un appareil photographique peut capturer.