BiométrieLe mot biométrie signifie littéralement « mesure du vivant » et désigne dans un sens très large l'étude quantitative des êtres vivants. Parmi les principaux domaines d'application de la biométrie, on peut citer l'agronomie, l'anthropologie, l'écologie et la médecine. L'usage de ce terme se rapporte de plus en plus à l'usage de ces techniques à des fins de reconnaissance, d'authentification et d'identification, le sens premier du mot biométrie étant alors repris par le terme biostatistique.
Empreinte digitalevignette| upright=0.9| Photo d'une empreinte digitale. vignette| upright=0.8| Dermatoglyphes d'un doigt : plis papillaires (crêtes et sillons). Une empreinte digitale ou dactylogramme est le dessin formé par un doigt sur un support suffisamment lisse pour qu'y restent marqués les dermatoglyphes. Les dermatoglyphes, également appelés « empreintes digitales » par abus de langage, sont des plis (des crêtes et des sillons) à la surface de la peau et particulièrement des doigts, qui forment des volutes et des tourbillons spécifiques à chaque doigt de chaque individu.
Graph embeddingIn topological graph theory, an embedding (also spelled imbedding) of a graph on a surface is a representation of on in which points of are associated with vertices and simple arcs (homeomorphic images of ) are associated with edges in such a way that: the endpoints of the arc associated with an edge are the points associated with the end vertices of no arcs include points associated with other vertices, two arcs never intersect at a point which is interior to either of the arcs. Here a surface is a compact, connected -manifold.
Carte d'identitéUne carte d'identité, parfois dénommée carte nationale d'identité, carte d'identité nationale ou carte d'identification selon le pays, est un document officiel qui permet à une personne physique de prouver son identité. Fin 2018, on estimait que près de d'humains sur la planète (soit une personne sur sept) ne disposaient pas encore de papiers d'identité officiels, ce qui rend les accords écrits, votes, achats en ligne, abonnements téléphoniques et accès aux services publics beaucoup plus difficiles.
BoostingLe boosting est un domaine de l'apprentissage automatique (branche de l'intelligence artificielle). C'est un principe qui regroupe de nombreux algorithmes qui s'appuient sur des ensembles de classifieurs binaires : le boosting optimise leurs performances. Le principe est issu de la combinaison de classifieurs (appelés également hypothèses). Par itérations successives, la connaissance d'un classifieur faible - weak classifier - est ajoutée au classifieur final - strong classifier.
Book embeddingIn graph theory, a book embedding is a generalization of planar embedding of a graph to embeddings in a book, a collection of half-planes all having the same line as their boundary. Usually, the vertices of the graph are required to lie on this boundary line, called the spine, and the edges are required to stay within a single half-plane. The book thickness of a graph is the smallest possible number of half-planes for any book embedding of the graph. Book thickness is also called pagenumber, stacknumber or fixed outerthickness.
Tutte embeddingIn graph drawing and geometric graph theory, a Tutte embedding or barycentric embedding of a simple, 3-vertex-connected, planar graph is a crossing-free straight-line embedding with the properties that the outer face is a convex polygon and that each interior vertex is at the average (or barycenter) of its neighbors' positions. If the outer polygon is fixed, this condition on the interior vertices determines their position uniquely as the solution to a system of linear equations.
Analyse en composantes principalesL'analyse en composantes principales (ACP ou PCA en anglais pour principal component analysis), ou, selon le domaine d'application, transformation de Karhunen–Loève (KLT) ou transformation de Hotelling, est une méthode de la famille de l'analyse des données et plus généralement de la statistique multivariée, qui consiste à transformer des variables liées entre elles (dites « corrélées » en statistique) en nouvelles variables décorrélées les unes des autres. Ces nouvelles variables sont nommées « composantes principales » ou axes principaux.
Apprentissage automatiqueL'apprentissage automatique (en anglais : machine learning, « apprentissage machine »), apprentissage artificiel ou apprentissage statistique est un champ d'étude de l'intelligence artificielle qui se fonde sur des approches mathématiques et statistiques pour donner aux ordinateurs la capacité d'« apprendre » à partir de données, c'est-à-dire d'améliorer leurs performances à résoudre des tâches sans être explicitement programmés pour chacune. Plus largement, il concerne la conception, l'analyse, l'optimisation, le développement et l'implémentation de telles méthodes.
Linear fractional transformationIn mathematics, a linear fractional transformation is, roughly speaking, an invertible transformation of the form The precise definition depends on the nature of a, b, c, d, and z. In other words, a linear fractional transformation is a transformation that is represented by a fraction whose numerator and denominator are linear. In the most basic setting, a, b, c, d, and z are complex numbers (in which case the transformation is also called a Möbius transformation), or more generally elements of a field.