Publication

Towards Efficient Gas Leak Detection in Built Environments: Data-Driven Plume Modeling for Gas Sensing Robots

Résumé

The deployment of robots for Gas Source Lo- calization (GSL) tasks in hazardous scenarios significantly reduces the risk to humans and animals. Gas sensing using mobile robots focuses primarily on simplified scenarios, due to the complexity of gas dispersion, with a current trend towards tackling more complex environments. However, most state-of-art GSL algorithms for environments with obstacles only depend on local information, leading to low efficiency in large and more structured spaces. The efficiency of GSL can be improved dramatically by coupling it with a global knowledge of gas distribution in the environment. However, since gas dispersion in a built environment is difficult to model analytically, most previous work incorporating a gas dispersion model was tested under simplified assumptions, which do not take into consideration the impact of the presence of obstacles to the airflow and gas plume. In this paper, we propose a probabilistic algorithm that enables a robot to efficiently localize gas sources in built environments, by combining a state-of-the-art probabilistic GSL algorithm, Source Term Estimation (STE) with a learned plume model. The pipeline of generating gas dispersion datasets from realistic simulations, the training and validation of the model, as well as the integration of the learned model with the STE framework are presented. The performance of the algorithm is validated both in high-fidelity simulations and real experiments, with promising results obtained under various obstacle configurations.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Proximité ontologique
Concepts associés (33)
Robotique
thumb|upright=1.5|Nao, un robot humanoïde. thumb|upright=1.5|Des robots industriels au travail dans une usine. La robotique est l'ensemble des techniques permettant la conception et la réalisation de machines automatiques ou de robots. L'ATILF donne la définition suivante du robot : « il effectue, grâce à un système de commande automatique à base de microprocesseur, une tâche précise pour laquelle il a été conçu dans le domaine industriel, scientifique, militaire ou domestique ».
Humanoid robot
A humanoid robot is a robot resembling the human body in shape. The design may be for functional purposes, such as interacting with human tools and environments, for experimental purposes, such as the study of bipedal locomotion, or for other purposes. In general, humanoid robots have a torso, a head, two arms, and two legs, though some humanoid robots may replicate only part of the body, for example, from the waist up. Some humanoid robots also have heads designed to replicate human facial features such as eyes and mouths.
Simulation de phénomènes
La simulation de phénomènes est un outil utilisé dans le domaine de la recherche et du développement. Elle permet d'étudier les réactions d'un système à différentes contraintes pour en déduire les résultats recherchés en se passant d'expérimentation. Les systèmes technologiques (infrastructures, véhicules, réseaux de communication, de transport ou d'énergie) sont soumis à différentes contraintes et actions. Le moyen le plus simple d'étudier leurs réactions serait d'expérimenter, c'est-à-dire d'exercer l'action souhaitée sur l'élément en cause pour observer ou mesurer le résultat.
Afficher plus
Publications associées (39)

Gas Sensing with Rotary-Wing Nano Aerial Vehicles

Chiara Ercolani

Harmful chemical compounds are released daily in warehouses, chemical plants and during environmental emergencies. Their uncontrolled dispersion contributes to the pollution of the atmosphere and threatens human and animal lives.When gas leaks occur, their ...
EPFL2024

Tales from a Robotic World. How Intelligent Machines Will Shape Our Future

Dario Floreano, Nicola Nosengo

Stories from the future of intelligent machines—from rescue drones to robot spouses—and accounts of cutting-edge research that could make it all possible. Tech prognosticators promised us robots—autonomous humanoids that could carry out any number of tasks ...
MIT Press2022

GaSLAM: An Algorithm for Simultaneous Gas Source Localization and Gas Distribution Mapping in 3D

Alcherio Martinoli, Chiara Ercolani, Lixuan Tang

Chemical gas dispersion poses considerable threat to humans, animals and the environment. The research areas of gas source localization and gas distribution mapping aim to localize the source of gas leaks and map the gas plume respectively, in order to hel ...
2022
Afficher plus
MOOCs associés (20)
Thymio: un robot pour se former à l'informatique
On propose dans ce MOOC de se former à et avec Thymio : apprendre à programmer le robot Thymio et ce faisant, s’initier à l'informatique et la robotique.
The Thymio robot as a tool for discovering digital science
This MOOC teaches basic understanding of robots’ mechanisms and Thymio’s programming languages, classroom use and pedagogical elements.
The Thymio robot as a tool for discovering digital science
This MOOC teaches basic understanding of robots’ mechanisms and Thymio’s programming languages, classroom use and pedagogical elements.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.