Publication

Density Estimation In Rkhs With Application To Korobov Spaces In High Dimensions

Résumé

A kernel method for estimating a probability density function from an independent and identically distributed sample drawn from such density is presented. Our estimator is a linear combination of kernel functions, the coefficients of which are determined by a linear equation. An error analysis for the mean integrated squared error is established in a general reproducing kernel Hilbert space setting. The theory developed is then applied to estimate probability density func-tions belonging to weighted Korobov spaces, for which a dimension-independent convergence rate is established. Under a suitable smoothness assumption, our method attains a rate arbitrarily close to the optimal rate. Numerical results support our theory.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.