Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
A kernel method for estimating a probability density function from an independent and identically distributed sample drawn from such density is presented. Our estimator is a linear combination of kernel functions, the coefficients of which are determined by a linear equation. An error analysis for the mean integrated squared error is established in a general reproducing kernel Hilbert space setting. The theory developed is then applied to estimate probability density func-tions belonging to weighted Korobov spaces, for which a dimension-independent convergence rate is established. Under a suitable smoothness assumption, our method attains a rate arbitrarily close to the optimal rate. Numerical results support our theory.
Fabio Nobile, Yoshihito Kazashi, Fabio Zoccolan
Fabio Nobile, Yoshihito Kazashi