Publication

Density Estimation In Rkhs With Application To Korobov Spaces In High Dimensions

Résumé

A kernel method for estimating a probability density function from an independent and identically distributed sample drawn from such density is presented. Our estimator is a linear combination of kernel functions, the coefficients of which are determined by a linear equation. An error analysis for the mean integrated squared error is established in a general reproducing kernel Hilbert space setting. The theory developed is then applied to estimate probability density func-tions belonging to weighted Korobov spaces, for which a dimension-independent convergence rate is established. Under a suitable smoothness assumption, our method attains a rate arbitrarily close to the optimal rate. Numerical results support our theory.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.