Data cubeIn computer programming contexts, a data cube (or datacube) is a multi-dimensional ("n-D") array of values. Typically, the term data cube is applied in contexts where these arrays are massively larger than the hosting computer's main memory; examples include multi-terabyte/petabyte data warehouses and time series of image data. The data cube is used to represent data (sometimes called facts) along some dimensions of interest.
Science des donnéesLa science des données est l'étude de l’extraction automatisée de connaissance à partir de grands ensembles de données. Plus précisément, la science des données est un domaine interdisciplinaire qui utilise des méthodes, des processus, des algorithmes et des systèmes scientifiques pour extraire des connaissances et des idées à partir de nombreuses données structurées ou non . Elle est souvent associée aux données massives et à l'analyse des données.
Informations non structuréesLes informations non structurées ou données non structurées sont des données représentées ou stockées sans format prédéfini. Ces informations sont toujours destinées à des humains. Elles sont typiquement constituées de documents textes ou multimédias, mais peuvent également contenir des dates, des nombres et des faits. Cette absence de format entraîne des irrégularités et des ambiguïtés qui peuvent rendre difficile la compréhension des données, contrairement au cas des données stockées dans des tableurs ou des bases de données par exemple, qui sont des informations structurées.
In-memory processingIn computer science, in-memory processing (PIM) is a computer architecture for processing data stored in an in-memory database. In-memory processing improves the power usage and performance of moving data between the processor and the main memory. Older systems have been based on disk storage and relational databases using Structured Query Language, which are increasingly regarded as inadequate to meet business intelligence (BI) needs.
OLAP cubeAn OLAP cube is a multi-dimensional array of data. Online analytical processing (OLAP) is a computer-based technique of analyzing data to look for insights. The term cube here refers to a multi-dimensional dataset, which is also sometimes called a hypercube if the number of dimensions is greater than three. A cube can be considered a multi-dimensional generalization of a two- or three-dimensional spreadsheet. For example, a company might wish to summarize financial data by product, by time-period, and by city to compare actual and budget expenses.
Exploratory data analysisIn statistics, exploratory data analysis (EDA) is an approach of analyzing data sets to summarize their main characteristics, often using statistical graphics and other data visualization methods. A statistical model can be used or not, but primarily EDA is for seeing what the data can tell us beyond the formal modeling and thereby contrasts traditional hypothesis testing. Exploratory data analysis has been promoted by John Tukey since 1970 to encourage statisticians to explore the data, and possibly formulate hypotheses that could lead to new data collection and experiments.
Entrepôt de donnéesvignette|redresse=1.5|Vue d'ensemble d'une architecture entrepôt de données. Le terme entrepôt de données ou EDD (ou base de données décisionnelle ; en anglais, data warehouse ou DWH) désigne une base de données utilisée pour collecter, ordonner, journaliser et stocker des informations provenant de base de données opérationnelles et fournir ainsi un socle à l'aide à la décision en entreprise. Un entrepôt de données est une base de données regroupant une partie ou l'ensemble des données fonctionnelles d'une entreprise.
Analyse des donnéesL’analyse des données (aussi appelée analyse exploratoire des données ou AED) est une famille de méthodes statistiques dont les principales caractéristiques sont d'être multidimensionnelles et descriptives. Dans l'acception française, la terminologie « analyse des données » désigne donc un sous-ensemble de ce qui est appelé plus généralement la statistique multivariée. Certaines méthodes, pour la plupart géométriques, aident à faire ressortir les relations pouvant exister entre les différentes données et à en tirer une information statistique qui permet de décrire de façon plus succincte les principales informations contenues dans ces données.
Optimisation linéairethumb|upright=0.5|Optimisation linéaire dans un espace à deux dimensions (x1, x2). La fonction-coût fc est représentée par les lignes de niveau bleues à gauche et par le plan bleu à droite. L'ensemble admissible E est le pentagone vert. En optimisation mathématique, un problème d'optimisation linéaire demande de minimiser une fonction linéaire sur un polyèdre convexe. La fonction que l'on minimise ainsi que les contraintes sont décrites par des fonctions linéaires, d'où le nom donné à ces problèmes.
Stockage de l'énergieLe stockage de l'énergie consiste à mettre en réserve une quantité d'énergie provenant d'une source pour une utilisation ultérieure. Il a toujours été utile et pratiqué, pour se prémunir d'une rupture d'un approvisionnement extérieur ou pour stabiliser à l'échelle quotidienne les réseaux électriques, mais il a pris une acuité supplémentaire depuis l'apparition de l'objectif de transition écologique.