Magnetocrystalline anisotropyIn physics, a ferromagnetic material is said to have magnetocrystalline anisotropy if it takes more energy to magnetize it in certain directions than in others. These directions are usually related to the principal axes of its crystal lattice. It is a special case of magnetic anisotropy. In other words, the excess energy required to magnetize a specimen in a particular direction over that required to magnetize it along the easy direction is called crystalline anisotropy energy.
NeutronLe neutron est une particule subatomique de charge électrique nulle. Les neutrons sont présents dans le noyau des atomes, liés avec des protons par l'interaction forte. Alors que le nombre de protons d'un noyau détermine son élément chimique, le nombre de neutrons détermine son isotope. Les neutrons liés dans un noyau atomique sont en général stables mais les neutrons libres sont instables : ils se désintègrent en un peu moins de 15 minutes (880,3 secondes). Les neutrons libres sont produits dans les opérations de fission et de fusion nucléaires.
Unitarian trickIn mathematics, the unitarian trick is a device in the representation theory of Lie groups, introduced by for the special linear group and by Hermann Weyl for general semisimple groups. It applies to show that the representation theory of some group G is in a qualitative way controlled by that of some other compact group K. An important example is that in which G is the complex general linear group, and K the unitary group acting on vectors of the same size.
Suite équidistribuéeEn mathématiques, une suite de nombres réels est dite équidistribuée ou uniformément répartie si la proportion de termes qui se retrouvent dans un sous-intervalle est proportionnelle à la longueur de cet intervalle. De telles suites sont étudiées dans la théorie approximation diophantienne et dans diverses applications de la méthode de Monte-Carlo. Une suite {s1, s2, s3, ...} de nombres réels est dite équidistribuée sur un intervalle [a, b] si, pour tout sous-intervalle [c, d] de [a, b], on a : (Ici, la notation |{s1,.