Long short-term memoryLong short-term memory (LSTM) network is a recurrent neural network (RNN), aimed to deal with the vanishing gradient problem present in traditional RNNs. Its relative insensitivity to gap length is its advantage over other RNNs, hidden Markov models and other sequence learning methods. It aims to provide a short-term memory for RNN that can last thousands of timesteps, thus "long short-term memory".
CompetitionCompetition is a rivalry where two or more parties strive for a common goal which cannot be shared: where one's gain is the other's loss (an example of which is a zero-sum game). Competition can arise between entities such as organisms, individuals, economic and social groups, etc. The rivalry can be over attainment of any exclusive goal, including recognition. Competition occurs in nature, between living organisms which co-exist in the same environment. Animals compete over water supplies, food, mates, and other biological resources.
FinanceLa finance renvoie à un domaine d'activité , aujourd'hui mondialisé, qui consiste à fournir ou trouver l'argent ou les « produits financiers » nécessaire à la réalisation d'une opération économique. La finance permet de faire transiter des capitaux des agents économiques excédentaires (qui disposent d'une épargne à faire fructifier) aux agents économiques déficitaires, qui en ont besoin (pour se financer, croître, etc.) La finance regroupe à la fois le système financier et les opérations financières qui ont lieu dans ce système.
Algorithme d'apprentissage incrémentalEn informatique, un algorithme d'apprentissage incrémental ou incrémentiel est un algorithme d'apprentissage qui a la particularité d'être online, c'est-à-dire qui apprend à partir de données reçues au fur et à mesure du temps. À chaque incrément il reçoit des données d'entrées et un résultat, l'algorithme calcule alors une amélioration du calcul fait pour prédire le résultat à partir des données d'entrées.
Privacy engineeringPrivacy engineering is an emerging field of engineering which aims to provide methodologies, tools, and techniques to ensure systems provide acceptable levels of privacy. In the US, an acceptable level of privacy is defined in terms of compliance to the functional and non-functional requirements set out through a privacy policy, which is a contractual artifact displaying the data controlling entities compliance to legislation such as Fair Information Practices, health record security regulation and other privacy laws.
Threat (computer)In computer security, a threat is a potential negative action or event facilitated by a vulnerability that results in an unwanted impact to a computer system or application. A threat can be either a negative "intentional" event (i.e. hacking: an individual cracker or a criminal organization) or an "accidental" negative event (e.g. the possibility of a computer malfunctioning, or the possibility of a natural disaster event such as an earthquake, a fire, or a tornado) or otherwise a circumstance, capability, action, or event.
Apprentissage non superviséDans le domaine informatique et de l'intelligence artificielle, l'apprentissage non supervisé désigne la situation d'apprentissage automatique où les données ne sont pas étiquetées (par exemple étiquetées comme « balle » ou « poisson »). Il s'agit donc de découvrir les structures sous-jacentes à ces données non étiquetées. Puisque les données ne sont pas étiquetées, il est impossible à l'algorithme de calculer de façon certaine un score de réussite.
Protection de la vie privée dès la conceptionLa protection de la vie privée dès la conception, privacy by design en anglais, est une approche de l’ingénierie des systèmes qui prend en compte la vie privée tout au long du processus. Ce concept est un exemple de la (approche qui intègre les valeurs de l’humain dans tout le processus de la conception de la technologie).
Stratégie d'évaluation (informatique)Un langage de programmation utilise une stratégie d'évaluation pour déterminer « quand » évaluer les arguments à l'appel d'une fonction (ou encore, opération, méthode) et « comment » passer les arguments à la fonction. Par exemple, dans l'appel par valeur, les arguments doivent être évalués avant d'être passés à la fonction. La stratégie d'évaluation d'un langage de programmation est spécifiée par la définition du langage même. En pratique, la plupart des langages de programmation (Java, C...
Apprentissage profondL'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.